首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
廉玉欣  杨世彦  杨威 《电工技术学报》2021,36(18):3957-3968
为提高多脉波整流器的谐波抑制能力,提出一种基于非常规平衡电抗器的直流侧谐波抑制方法.在常规平衡电抗器的基础上,增加一次侧抽头数和二次绕组,并通过一次侧抽头控制电路和二次侧整流电路与负载相连,进而提高整流器输出电压脉波数和输入电流的阶梯数,降低了输入电流总谐波畸变率(THD).以输入线电流THD最小为目标,分析非常规平衡电抗器的工作模式和参数优化设计方法.实验结果验证了理论分析的正确性,应用非常规平衡电抗器后,并联型整流器的输出脉波数可从12脉波增加至24、36、48脉波,输入线电流THD由15.15%降低至3.81%,谐波抑制能力得到显著提升.  相似文献   

2.
提出一种应用于双反星形不控整流器的直流侧双无源谐波抑制方法。该方法使用多绕组平衡电抗器代替平衡电抗器,多绕组平衡电抗器的一次绕组与两个共阴极二极管组成两抽头变换器,二次绕组与另外两个共阴极二极管组成单相全波整流电路,两种无源电路共同构成双无源谐波抑制电路。在双无源谐波抑制电路的作用下,双反星形不控整流器的输出脉波数增加至原来的3倍,成为18脉波整流器。本文分析了双无源谐波抑制电路的工作模态,并从输入线电流总谐波畸变率(THD)值最小的角度出发,对多绕组平衡电抗器的匝比进行了优化设计。理论分析表明,使用直流侧双无源谐波抑制方法后,整流器输入线电流THD降低至10.1%,负载电压纹波也减小为7.56×10-3。仿真和实验结果验证了理论分析的正确性。另外,双无源谐波抑制方法中使用的都是无源器件,具有电路结构简单、易于实现等优点。  相似文献   

3.
为进一步提高12脉波整流器的谐波抑制性能,该文提出一种带辅助无源电流形成电路(passive current waveshaping circuit,PCWC)的低谐波多脉波整流器。所提出的多脉波整流器由常规12脉波整流器和PCWC组成。PCWC安装在12脉波整流器的直流侧并包含1个带副边绕组的平衡电抗器(modified inter-phase reactor,M-IPR)和2个辅助单相整流器(auxiliary single-phase rectifiers,ASRs)。2个ASRs的共同调制首先将整流桥输出电流的电平数从1增加到4,然后根据交直流侧电流关系将整流器的脉波数由12提高到36,进而获得THD小于5%的近似正弦输入电流。该方法无需使用有源开关器件,仅需额外增加2个小容量的辅助单相全桥整流器,具有电路结构简单,易于实现,可靠性高等优点。搭建1台功率为2kW的试验样机,仿真和实验结果验证了理论分析的正确性。  相似文献   

4.
为了有效抑制常规双反星形整流器的输入电流谐波和输出电压脉动,提出一种基于全波平衡电抗器的双反星形12脉波整流器。所提出的12脉波整流器由常规的双反星形整流器和全波平衡电抗器组成。全波平衡电抗器中含有带副边绕组的平衡电抗器和辅助单相全波整流器,辅助单相全波整流器通过从平衡电抗器的副边绕组提取方波电流来增加2个三相半波整流桥的输出电流和电压模态,然后依据交直流两侧电流和直流侧电压的关系,将双反星形整流器的脉波数从6倍增到12,显著抑制了输入电流谐波和输出电压脉动。因流过辅助单相全波整流器的电流仅为负载电流的6.69%,相较于现有基于抽头平衡电抗器的脉波倍增方法,所提方法除具备电路结构简单可靠、易于实现和成本低廉等优点外,还具有更小的附加导通损耗,更适用于低压大功率工业场合。研制了一台功率为1.1 kW的实验样机,验证了理论分析的正确性和该方法的有效性。  相似文献   

5.
常规12脉波整流器会对电网造成大量谐波污染。为同时提高整流器交、直流侧电能质量,提出了一种直流侧带混合谐波抑制电路(Hybrid Harmonic Suppression Circuit, HHSC)的24脉波整流器。所提整流器由常规12脉波整流器、抽头变换器(Tapped Inter-Phase Converter, TIPC)和补偿电路(Compensation Circuit, CC)组成。TIPC的输出端与负载串联,直接调制整流桥的输出电流和电压。CC与负载并联,间接调制整流桥的输出电流,然后根据交、直流两侧电流关系和直流侧电压关系,最终使整流器输入电流接近正弦波,输出电压由12脉波倍增至24脉波。该方法仅需小容量(仅为输出功率的2.65%)的HHSC即可有效降低输入电流谐波和输出电压纹波,具有高谐波抑制性能、低谐波抑制代价等优点。在Matlab/Simulink中搭建仿真模型,验证了所提方法的正确性和有效性。  相似文献   

6.
为描述多脉波整流器断相时的故障特征,分析了断相对使用直流侧谐波抑制方法的多脉波整流器的影响。以使用两抽头变换器的24脉波整流器和使用有源平衡电抗器的12脉波整流器为例,分析了正常工作和断相运行时整流器各处的电压和电流特征。通过理论分析和实验验证,结果表明断相会导致两整流桥输出电压的瞬时差等于零,进而使抽头变换器和有源平衡电抗器不能产生环流去抑制输入电流谐波;同时,断相运行也将使负载电压纹波显著增大,即断相将导致输入侧和负载侧电能质量恶化。相关结论可为并联型多脉波整流器断相故障的分析和实时处理提供理论依据。  相似文献   

7.
直流侧带PWM整流器的12脉波整流系统及其负载适应性   总被引:1,自引:0,他引:1  
提出一种直流侧带小容量单相PWM整流器的12脉波整流系统,通过环流抑制谐波机理,分析得出控制辅助PWM整流器工作在单位功率因数状态,使系统直流侧产生合适的三角波环流,能够显著抑制输入电流谐波。对于大功率整流系统常用的LR和LCR型负载,分析了输入电流THD值与负载参数的关系,系统均能达到较好的谐波抑制效果。研制了一台额定功率为6.4kW的系统,额定负载下输入电流THD值约为1%,实验结果验证了系统负载适应性及其在大功率场合的应用价值。  相似文献   

8.
针对应用星形联结自耦变压器的大电流整流器,提出一种应用有源平衡电抗器(AIPR)抑制其输入电流谐波的方法。分析不使用有源平衡电抗器时的输入电流、负载电压及自耦变压器的容量;给出有源平衡电抗器副边所接辅助电路的拓扑及其控制方法;当整流器输入电流谐波得到最大抑制时,确定辅助电路输入电流的幅值、频率和相位,并计算有源平衡电抗器对负载电压、自耦变压器容量的影响。实验结果表明,使用有源平衡电抗器后,整流器的输入电流总谐波畸变率(THD)由27%降到了3. 7%,输入电流谐波得到显著抑制;辅助电路的容量仅为负载功率的5. 1%,谐波抑制代价较小;负载电压不受有源谐波抑制方法的影响,仍为6脉波;有源谐波抑制方法改变了星形联结自耦变压器的绕组电流,导致其容量由95%上升到105%。  相似文献   

9.
为提高多脉波整流器的谐波抑制能力和功率密度,提出了一种使用直流侧有源谐波抑制方法和星形联结自耦变压器的多脉波整流器。该整流器的两个整流桥分别与两个Boost变换器相连,通过控制Boost电路的输入电感电流使整流器输入电流近似为正弦波;使用星形联结自耦变压器作为移相变压器,该变压器绕组结构交互联结,可显著降低变压器的容量,提高系统的功率密度。计算了使整流器输入电流为正弦波时的Boost变换器电感电流理论波形,并给出了可实现的电感电流波形,进一步分析了直流侧谐波抑制方法对星形联结自耦变压器容量的影响。仿真及实验结果表明,该整流器可有效抑制输入电流谐波,且具有较高的功率密度。  相似文献   

10.
苍胜  李渊  杨威  杨世彦 《电源学报》2014,12(4):23-29
12脉波整流系统存在输入电流谐波含量较高的问题,对此本文详细分析了系统交直流侧电流关系,明确了有源平衡电抗器(AIPR)原边环流抑制输入电流谐波的机理,设计了交错并联Boost PFC电路对AIPR原边电流进行调制,以降低系统交流侧输入电流谐波;同时将能量馈送至12脉波整流系统输出负载侧,以实现谐波能量的重新利用。利用Matlab/Simulink对所设计的系统进行了仿真验证,并在9 kW功率等级下进行了实验验证。结果表明,仅需加入系统容量2%左右的变换器,即可将输入电流THD降低至原来的1/3,验证了该方法在大功率场合谐波抑制的有效性。  相似文献   

11.
提出了一种应用于电动汽车一体化充电系统中的单相PWM整流有源滤波的控制方法,以抑制充电中单相整流电路的直流电压二次纹波。在单相电网电压充电时,这种控制方法能通过控制电机驱动器电路,复用其中的两相同时进行单相整流和有源滤波,在实现整流器单位功率因数运行、稳定输出直流电压的同时,减小直流侧电压的二次纹波,减小网侧输入电流的总谐波畸变率。对单相整流直流侧电压二次纹波的产生机理、有源滤波电路的拓扑结构、单相整流和有源滤波的控制原理和方法进行了详细地分析。最后搭建输入电压峰值110 V,输出直流电压220 V,负载等效电阻100Ω的仿真模型,通过仿真和实验结果验证了所提控制方法的可行性。  相似文献   

12.
多脉波整流器以供电质量高、网侧电流畸变小等优点,被广泛应用于电解铝及地铁直流牵引供电系统中。在基于整流变压器原边三角形延长接法的24脉波整流系统基础上,提出实现48脉波整流系统的方法;通过数学计算得到实现理想48脉动整流时抽头电抗器的抽头变比;建立了MATLAB仿真模型,对环流、网侧电流与24脉波整流进行对比分析。仿真结果表明:通过设置合理的抽头变比,利用抽头电抗器可以实现理想的48脉波输出,并可以消除特定次网侧电流谐波,有效降低网侧电流总谐波畸变率。  相似文献   

13.
A single-phase diode bridge rectifier with a filter capacitor on the dc side is often employed to convert ac input into a dc voltage. The input current of the rectifier contains harmonic currents which cause undesirable power line effects. Recently, a method using the time domain analysis has been proposed to calculate the harmonic currents of rectifier considering noninfinite capacitance, i.e., non-zero dc side impedance. This method is very accurate, but it requires a long computing time and a complicated algorithm. This paper proposes a new method that makes it possible to easily calculate the harmonic currents taking into account the effects of the ac and dc side impedances of rectifier. The proposed method, which is based on the frequency domain method, can be executed only with the algebraic computation, and its accuracy is quite high. The validity of the proposed method is also demonstrated by comparison with the results of time simulation.  相似文献   

14.
改进的直流侧串联型有源电力滤波器   总被引:2,自引:1,他引:1  
提出一种单相输出可调压的新型直流侧串联型有源电力滤波器(active power filter,APF),对单相整流类负载进行功率因数校正和谐波治理有很大的技术优势。从理论上分析了改进型直流侧APF的电路拓扑和基本工作原理,给出了主电路的主要参数设计和选取标准,为系统的综合设计提供了理论依据。与传统的交流侧串联型APF相比,该APF串联在整流桥的直流侧,简化了电路结构,减少了有源开关的数量;与直流侧串联型APF相比,该改进型APF实现了输出电压的可调,简化了相应的控制和驱动电路,进一步减小了储能电容容量。仿真和实验结果证明了所提出拓扑的正确性和可靠性。  相似文献   

15.
为提高多脉波整流器的直流侧无源谐波抑制能力,研究了基于两抽头变换器的24脉波整流器直流侧谐波抑制机理。根据抽头变换器的结构及安匝平衡原理,分析了抽头变换器的功能及工作模式,研究了抽头变换器的工作模式对整流桥输出电流、整流器输入电流及负载电压的影响,给出了抽头变换器变比的理论最优值。理论分析及实验结果表明,抽头变换器的端电压会使其所接的两个二极管交替导通,对整流桥输出电流进行调制,进而产生环流,该环流流经交流侧时会抵消原输入电流中的12k±1(k为奇数)次谐波。另外,抽头变换器所接的两个二极管的交替导通,会在负载上产生附加电压,附加电压的存在可以显著降低负载电压的纹波系数。相应的实验结果验证了理论分析的正确性。  相似文献   

16.
大容量多重化逆变器的输出电压谐波分析   总被引:2,自引:0,他引:2  
文小玲  尹项根 《高电压技术》2007,33(10):191-196,202
针对目前缺乏对大容量多重化逆变器的输出电压谐波进行全面分析和比较的现状,根据多重化变压器的不同结构,将现有的典型多重化逆变器分为3类并从理论上推导出了它们的输出电压及谐波电压幅值表达式;给出了电压谐波畸变系数与重数和脉冲控制参数间的变化关系;对比分析了它们的电压谐波畸变率。理论和仿真分析结果的一致性表明由三电平逆变桥构成的多重化逆变器不仅能以较低的重数实现高压大容量输出,还可获得满意的电压谐波畸变率,且可有效减小变压器体积、重量和损耗,因而更适用于高压大容量电力电子装置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号