首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a coordination strategy of Load Frequency Control (LFC) and digital frequency protection for an islanded microgrid (MG) considering high penetration of Renewable Energy Sources (RESs). In such MGs, the reduction in system inertia due to integration of large amount of RESs causes undesirable influence on MG frequency stability, leading to weakening of the MG. Furthermore, sudden load events, and short circuits caused large frequency fluctuations, which threaten the system security and could lead to complete blackouts as well as damages to the system equipment. Therefore, maintaining the dynamic security in MGs is one of the important challenges, which considered in this paper using a specific design and various data conversion stages of a digital over/under frequency relay (OUFR). The proposed relay will cover both under and over frequency conditions in coordination with LFC operation to protect the MG against high frequency variations. To prove the response of the proposed coordination strategy, a small MG was investigated for the simulation. The proposed coordination method has been tested considering load change, high integration of RESs. Moreover, the sensitivity analysis of the presented technique was examined by varying the penetration level of RESs and reducing the system inertia. The results reveal the effectiveness of the proposed coordination to maintain the power system frequency stability and security. In addition, the superiority of the OUFR has been approved in terms of accuracy and speed response during high disturbances.  相似文献   

2.
Owing to the significant number of hybrid generation systems (HGSs) containing various energy sources, coordination between these sources plays a vital role in preserving frequency stability. In this paper, an adaptive coordination control strategy for renewable energy sources (RESs), an aqua electrolyzer (AE) for hydrogen production, and a fuel cell (FC)-based energy storage system (ESS) is proposed to enhance the frequency stability of an HGS. In the proposed system, the excess energy from RESs is used to power electrolysis via an AE for hydrogen energy storage in FCs. The proposed method is based on a proportional-integral (PI) controller, which is optimally designed using a grey wolf optimization (GWO) algorithm to estimate the surplus energy from RESs (i.e., a proportion of total power generation of RESs: Kn). The studied HGS contains various types of generation systems including a diesel generator, wind turbines, photovoltaic (PV) systems, AE with FCs, and ESSs (e.g., battery and flywheel). The proposed method varies Kn with varying frequency deviation values to obtain the best benefits from RESs, while damping the frequency fluctuations. The proposed method is validated by considering different loading conditions and comparing with other existing studies that consider Kn as a constant value. The simulation results demonstrate that the proposed method, which changes Kn value and subsequently stores the power extracted from the RESs in hydrogen energy storage according to frequency deviation changes, performs better than those that use constant Kn. The statistical analysis for frequency deviation of HGS with the proposed method has the best values and achieves large improvements for minimum, maximum, difference between maximum and minimum, mean, and standard deviation compared to the existing method.  相似文献   

3.
In renewable penetrated power systems, frequency instability arises due to the volatile nature of renewable energy sources (RES) and load disturbances. The traditional load frequency control (LFC) strategy from conventional power sources (CPS) alone unable to control the frequency deviations caused by the aforementioned disturbances. Therefore, it is essential to modify the structure of LFC, to handle the disturbances caused by the RES and load. With regards to the above problem, this work proposes a novel coordinated LFC strategy with modified control signal to have Plug-in Hybrid Electric Vehicles (PHEVs) for frequency stability enhancement of the Japanese power system. Where, the coordinated control strategy is based on the PID controller, which is optimally tuned by the recently developed JAYA Algorithm (JA). Numerous simulations are performed with the proposed methodology and, the results have confirmed the effectiveness of a proposed approach over some recent and well-known techniques in literature. Furthermore, simulation results reveal that the proposed coordinated approach significantly minimizing the frequency deviations compared to the JAYA optimized LFC without PHEVs & with PHEVs but no coordination.  相似文献   

4.
The ‘mismatch losses’ problem is commonly encountered in distributed photovoltaic (PV) power generation systems. It can directly reduce power generation. Hence, PV array reconfiguration techniques have become highly popular to minimize the mismatch losses. In this paper, a dynamical array reconfiguration method for Total-Cross-Ties (TCT) and Series–Parallel (SP) interconnected PV arrays is proposed. The method aims to improve the maximum power output generation of a distributed PV array in different mismatch conditions through a set of inverters and a switching matrix that is controlled by a dynamic and scalable reconfiguration optimization algorithm. The structures of the switching matrix for both TCT-based and SP-based PV arrays are designed to enable flexible alteration of the electrical connections between PV strings and inverters. Also, the proposed reconfiguration solution is scalable, because the size of the switching matrix deployed in the proposed solution is only determined by the numbers of the PV strings and the inverters, and is not related to the number of PV modules in a string. The performance of the proposed method is assessed for PV arrays with both TCT and SP interconnections in different mismatch conditions, including different partial shading and random PV module failure. The average optimization time for TCT and SP interconnected PV arrays is 0.02 and 3 s, respectively. The effectiveness of the proposed dynamical reconfiguration is confirmed, with the average maximum power generation improved by 8.56% for the TCT-based PV array and 6.43% for the SP-based PV array compared to a fixed topology scheme.  相似文献   

5.
针对风光互补微电网内风力发电系统和光伏发电系统运行特性,提出采用蓄电池储能系统(Battery Energy Storage System,BESS)与超级电容储能系统(Super Capacitor Energy Storage System,SCESS)下垂协调控制策略基础上对微电网母线电压采用对应的控制策略,进而优化无功功率控制,以此进一步提高对微电网内负荷供电的稳定性。文中对微电网模式切换过程,加以控制策略理论分析,再通过PSCAD/EMTDC仿真软件,验证文中所提出控制策略的有效性及可行性。  相似文献   

6.
在高风电渗透率电力系统中,针对双馈感应风电机组的转子转速与电网频率解耦所造成的机组惯性与频率响应能力缺失的问题,提出了基于模糊逻辑控制的风—储系统协同运行控制策略。该控制策略通过在风—储控制系统中嵌入模糊逻辑控制器来决策风—储系统响应电网频率波动的总有功出力和风力机转子动能的调频参与系数。基于此,根据不同风速下的风电机组运行特性将风速分区,并针对各风速区间构建了适应该区间转速—功率特点的风—储系统运行策略,使风—储系统具备能适应多种风况的短期频率响应能力。仿真结果表明:文中所提出的风—储系统协同运行控制策略能有效提升风—储系统的惯性以及短期频率响应能力,不仅能使风—储系统的短期频率响应能力适应多种风况,还可避免风电机组退出调频造成的频率二次跌落问题,同时改善了高风电渗透率电力系统的频率稳定性。  相似文献   

7.
With high penetration of renewable energy sources (RESs) in modern power systems, system frequency becomes more prone to fluctuation as RESs do not naturally have inertial properties. A conventional energy storage system (ESS) based on a battery has been used to tackle the shortage in system inertia but has low and short-term power support during the disturbance. To address the issues, this paper proposes a new synthetic inertia control (SIC) design with a superconducting magnetic energy storage (SMES) system to mimic the necessary inertia power and damping properties in a short time and thereby regulate the microgrid (µG) frequency during disturbances. In addition, system frequency deviation is reduced by employing the proportional-integral (PI) controller with the proposed SIC system. The efficacy of the proposed SIC system is validated by comparison with the conventional ESS and SMES systems without using the PI controller, under various load/renewable perturbations, nonlinearities, and uncertainties. The simulation results highlight that the proposed system with SMES can efficiently manage several disturbances and high system uncertainty compared to the conventional ESS and SMES systems, without using the PI controller.  相似文献   

8.
For the load frequency control (LFC) of the interconnected power system, a two-level coordinated control frame based on multi-agent system is proposed to improve the frequency control performance of the power system. In the control frame, the upper-level agent, in a centralized manner, coordinates the lower-level LFC agents to deal with the conflict between narrowing the area control error and stabilizing the system frequency. The lower-level LFC agents, in the distributed cooperative manner, realize the mutual power support among the neighboring areas to guarantee the frequency stability in an emergency. To verify the validity of the proposed method, the numerical simulations are performed on the three-area interconnected power systems.  相似文献   

9.
传统的火电与水电调频机组因其固有特性难以满足电力系统快速发展、新能源发电集中并网等引起的频率稳定控制需求,储能以其灵敏精准的出力特性逐步在电力系统调频领域中实现了规模化应用。针对规模化储能资源响应速度快、跟踪精度高、调节方向易改变及有限的容量等特点展开了其参与电网调频的控制策略研究:首先,建立了区域电网自动发电控制(AGC)系统及包含储能荷电状态(SOC)的储能系统仿真模型;然后,综合考虑储能资源与常规电源的发电特性,提出了计及储能SOC的快慢速调频资源协调控制策略;最后,搭建了4种不同的仿真场景,通过仿真试验对提出的控制策略的有效性进行了验证。  相似文献   

10.
This paper focuses Load Frequency Control (LFC) mechanism for multi-generating two areas interconnected power systems with energy storage system in a deregulated power environment. The two areas, demarcated as Area-I and Area-II, consist of thermal, hydro and gas power units. This paper also incorporates the economic load dispatch mechanism into the LFC for economical division of load during load deviation. Small signal stability analysis through participating factor has also been done to determine the oscillation state of the system, i.e., frequency deviation in both areas. Therefore, proper controller is required to reduce the oscillation of the system. The optimum value of the integral gain of the integral controller has to be selected to achieve the goal. Hence, Opposition-based Harmonic Search (OHS) technique is used for the optimization purpose. During major disturbance in the areas, primary and secondary controllers are not sufficient to reduce the frequency and tie-line power oscillation due to slow response of the governor mechanism. Therefore, energy storage system, i.e., Redox Flow Battery (RFB), is used for improvement of the dynamic response of the system which has very small time constant and quick response. The proposed control mechanism has been analyzed in a deregulated power environment with the help of different simulation case studies to find out improved dynamic performance over integral control strategies.  相似文献   

11.
This paper presents a robust decentralized proportional-integral (PI) control design as a solution of the load frequency control (LFC) in a multi-area power system. In the proposed methodology, the system robustness margin and transient performance are optimized simultaneously to achieve the optimum PI controller parameters. The Kharitonov’s theorem is used to determine the robustness margin, i.e., the maximal uncertainty bounds under which the stable performance of the power system is guaranteed. The integral time square error (ITSE) is applied to quantify the transient performance of the LFC system. In order to tune the PI gains, the control objective function is optimized using the genetic algorithm (GA). To validate the effectiveness of the proposed approach, some time based simulations are performed on a three-area power system and the results are then compared with an optimal PI controller. The comparisons show that the proposed control strategy provides the satisfactory robust performance for the wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other methods.  相似文献   

12.
风力发电对系统频率影响及虚拟惯量综合控制   总被引:1,自引:0,他引:1  
针对大规模风电接入引起系统等效转动惯量下降、系统频率稳定风险上升的问题,在分析电力系统调频过程与风电常规虚拟惯量调频的基础上,建立了含风电的电力系统频率动态响应模型,研究了风电及调频参数对系统频率动态特性的影响及变化规律。提出了基于选择函数的风电机组新型虚拟惯量综合控制方法,利用有限风电机组转子动能,有效增加了系统等效转动惯量,同时避免了传统控制所造成的功率二次跌落。在MATLAB/Simulink中建立了系统仿真模型,仿真验证了控制策略有效性及对频率动态特性的改善作用。  相似文献   

13.
随着可再生能源的大规模并网,其间歇和随机特性给电力系统的频率稳定和控制带来巨大挑战。基于现有自动发电控制框架,根据常规发电机组和插电式电动车(PEVs)的互补特性,提出了一个基于模型预测控制(MPC)的优化控制框架。MPC负荷分配器根据常规发电机组和PEVs不同时间尺度的动态和AGC执行周期,在满足调节功率和电能约束的条件下,协调控制来自常规发电机组和PEVs的调节功率,使ACE跟踪误差和调节成本最小。仿真结果证明,提出的方法能够实现AGC性能的改善和调节成本的节约。  相似文献   

14.
针对发电能源结构的多元化发展给互联电网负荷频率的稳定性控制带来较大的挑战,建立含抽水蓄能电站的两区域互联电网多元混合发电的负荷频率控制模型,提出一种基于粒子群优化算法的负荷频率线性自抗扰控制器参数整定优化策略,通过粒子群算法的迭代寻优计算获得最优的线性自抗扰控制器参数。考虑互联电网各区域发生不同的负荷扰动,在抽水蓄能电站的抽水和发电2种工况下,对所提出的控制方法进行系统仿真。仿真结果表明,通过粒子群算法优化的负荷频率线性自抗扰控制器,与传统PI控制器对比,前者具有更强的抗扰动能力和适应性,系统动态稳定性更好。  相似文献   

15.
为应对大规模可再生能源接入电网带来的随机性和波动性挑战,确保可再生能源利用的灵活性,在实际电网运行中加入合理的储能设备成为目前研究的热点。针对电化学储能参与含抽水蓄能电站的互联电网调频问题,提出一种基于线性自抗扰技术的抽/储联合负荷频率控制(LFC)策略。在建立了考虑调速器死区和发电速度限制等非线性条件的抽/储联合LFC模型的基础上比较不同控制器性能,采用所设计的二阶线性自抗扰控制器(LADRC),凭借其优良控制性能并引入需求响应(DR)参与调频。仿真验证在抽水蓄能中加入电化学储能后系统具有更强的抗干扰性,对平抑电网频率波动具有良好的动态响应。  相似文献   

16.
The main objective of this paper that distinguishes it from other similar articles is to employ predictive control strategy to improve the stability of power systems (4- machines and 10-machine) in presence of wind farms based on Doubly Fed Induction Generator (DFIG), using Static Synchronous Series Compensator (SSSC) and Super Capacitor Energy Storage System (SCESS). In this paper, SCESS is used to control the active power in the Grid Side Convertor (GSC) and SSSC is employed to reduce low frequency oscillations. The proposed strategy based on the predictive control can be simultaneously used to control the active and reactive power of the Rotor Side Convertor (RSC) as well as damping controller design for SCESS and SSSC. A function is used in the predictive control strategy to reduce computational complexity in selecting the input paths of Laguerre functions. Moreover, the sampling time is reduced by means of employing the exponential data weighting. Simulation results for the function-based predictive control using disturbance scenario in the field of non-linear time are compared with the other two methods, model-based predictive control and classic model (without using the predictive control). The effectiveness of the proposed strategy in improving stability is confirmed through simulation result.  相似文献   

17.
Open communication system in modern power systems brings concern about information staleness which may cause power system frequency instability. The information staleness is often characterized by communication delay. However, communication delay is a packet-centered metric and cannot refect the requirement of information freshness for load frequency control (LFC). This paper introduces the age of information (AoI), which is more compre-hensive and informative than the conventional communication delay modeling method. An LFC controller and com-munication are integrated into the design for LFC performance improvement. An AoI-aware LFC model is formulated frst, and considering each allowable update period of the smart sensor, diferent AoI-aware PI controllers are then designed according to the exponential decay rate. The right AoI-aware controller and update period are selected according to the degree of frequency fuctuation of the power system. Case studies are carried out on one-area and two-area power systems. The results show the superior performance of the AoI-aware controllers in comparison to the delay-dependent controllers.  相似文献   

18.
双馈异步发电机(DFIG)在大规模风电并网环境下提供的无功功率无法满足并网需求。虽然引入固定电容器能够提供无功补偿,但系统受功率耦合的影响无法有效实时维持电压稳定。提出了一种静止无功发生器(SVG)与DFIG协调补偿无功的控制策略,同时引入电力系统稳定器(PSS)抑制系统的低频振荡,充分利用DFIG风电机组自身发出无功的能力,减少了SVG的配置容量。在MATLAB/Simulink软件仿真平台建立DFIG风电机组并网模型,仿真结果证实了此控制策略能够完成连续无功补偿,有效维持并网点电压稳定,增强系统输电能力。  相似文献   

19.
考虑电池储能系统荷电状态的有功功率协调控制   总被引:2,自引:1,他引:1  
微电网孤岛运行时,若供需存在较长时间的不平衡,传统的无互联信号线有功功率协调控制可能导致电池储能系统(BESS)荷电状态(SOC)超出安全运行范围。针对该问题,提出了一种考虑SOC的多BESS与可再生能源(RES)间的分布式有功功率协调控制策略。该方法通过基于瞬时功率的变斜率下垂控制、基于SOC的恒功率比例—积分(PI)下垂控制以及基于母线频率的功率下垂控制的集成来实现有功功率的无互联信号线自治协调控制。所提控制方法不仅可简单植入BESS和RES的控制系统中而无需修改其内环控制结构,而且能使SOC处于安全范围的同时最大化RES利用。实时仿真结果表明了所提策略的有效性。  相似文献   

20.
李玲芳  陈义宣  许岩  文福拴 《电力建设》2021,42(11):125-132
负荷频率控制(load frequency control, LFC)是维持电力系统安全稳定运行的基础。对于多区域互联电力系统,由于描述动态过程的微分方程组相当复杂,这给负荷频率控制器的设计带来了困难。在此背景下,针对多区域互联电力系统,提出基于交替方向乘子法 (alternating direction method of multiplier, ADMM) 的分布式最优负荷频率控制器设计方法,以取得良好的控制性能,同时具备较高的计算效率。首先,介绍了负荷频率控制问题的微分方程模型。之后,基于二次多项式和矩阵稀疏化构建了分布式最优LFC策略的数学模型,并采用ADMM求解。最后,以三区域互联电力系统为例对所提方法进行了验证。仿真结果表明,针对负荷扰动和时变参数,所提方法能够把各区域的频率偏差和区域间联络线上的功率偏差控制到0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号