首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
磷酸铁锂电池SOC估算方法研究   总被引:17,自引:2,他引:15  
磷酸铁锂电池宽的电压平台和严重的两端极化不利于SOC的估算,但电池的SOC对电池组不一致性和寿命有着重要的影响,因此本文在磷酸铁锂电池的现有SOC估算分析基础上,研究了反应电池电化学特征的伏安特性曲线,提出了不同充电倍率、不同老化程度下可靠和准确的△Q/△V分析方法,利用电池在充电过程中的峰值△Q修正电池SOC值。为电动汽车电池组在线均衡和智能电池系统的管理策略提供依据。  相似文献   

2.
刘耿峰  张向文 《电源技术》2022,46(3):329-334
针对电动汽车动力电池组的管理需求,设计了一款基于MC9S12XEP100和LTC6804的锂电池管理系统,实现对单体电池电压、电流和温度实时监控、电压均衡管理、热管理、充放电管理、数据存储和上位机显示功能。针对电池荷电状态(state of charge, SOC)估算精度和实时性方面的问题,提出了一种新颖的开路电压和安时积分融合型SOC估算方法,有效减小了开路电压处于平台期造成的误差影响。采用Arbin电池测试设备对上述功能和SOC估计方法进行了测试验证。结果显示,电池电压误差小于0.07 V,温度误差小于1℃,SOC估算误差小于1.2%,因此,设计系统可用于实际电动汽车动力电池组管理,实现电池SOC实时在线准确估计。  相似文献   

3.
针对纯电动汽车串联锂电池组在使用时出现的不一致性造成的不利影响,设计了一套电池组均衡系统。提出了一种基于修正因子的5点修正荷电状态(SOC)的新型估算方法,并给出了电池信号采集电路、通信电路及均衡电路的设计。仿真和实验结果表明均衡电路能实现恒流控制,新型SOC估算方法能准确估算锂电池的SOC值,同时该均衡系统可改善电池组间的不一致性。  相似文献   

4.
电动汽车作为新能源汽车的一种,其动力电池的性能是关系到电动汽车推广应用的重要因素。在电动汽车的实际运行中,需要对电池电压、电流、温度等信号实时采集以及对电池内部参数在线估算。为了实现电池组的在线监测和管理,设计了一种采用微处理器做主控制模块的电池管理系统。该系统采用集中式的管理模式对汽车电池组进行测试和分析,设计完成系统控制、信息采集和数据通讯,工作环境抗干扰措施等功能,实现了一种基于双卡尔曼滤波算法的电池荷电状态(SOC)的估算,并利用Lab VIEW实现上位机系统的界面设计。在实际测试中,采用该系统同时对192节锂电池进行监控,实现了电压、环境温度等信息的在线测量,电池荷电状态(SOC)的估算误差不超过1%。  相似文献   

5.
为了实时估算电池组SOC,分析了当前SOC定义的局限性,并考虑电池组的结构和单体电池的差异性,明确电池组SOC定义。提出基于结构逻辑树的电池组SOC估算模型,利用结构逻辑树描述电池组单体电池之间的逻辑关系,并基于结构逻辑树的运算规则,实现电池组SOC的快速估算。实验证明,该模型能够快速有效地估算电池组SOC。  相似文献   

6.
在电池的使用过程中,电池组荷电状态(SOC)的准确估计对电动汽车的使用起到非常重要的作用,直接关系到车辆的续航里程。同时组成电池组的电池单体SOC的一致性会直接影响电池组的充、放电效率。在电池的使用过程中,组成电池组的电池单体会存在一定的不一致性,这使得电池组的SOC估计相当困难。在分析电池单体模型的基础上,对电池组进行建模,并使用重组状态空间方程的方法降低电池组状态空间方程的维数,同时使用EKF-UKF对电池组的内部参数和电池组的SOC进行观测和估计。最后通过恒流工况和DST工况验证算法的准确性和正确性,并分析了电池单体间的不一致性对电池组容量的影响。  相似文献   

7.
电动汽车在低温地区工作运行,电池组的性能会下降,低温对电池组充放电容量的影响比较大。为了使电动汽车在低温地区能够正常工作,低温下准确的SOC估计是必不可少的条件。本文提出了一种改进安时计量法适用于不同温度条件的电池SOC估计算法,该算法主要考虑了不同温度下电池实际可用容量的变化对SOC估计的影响,并且可以对不同温度下估算的SOC进行换算。通过平台实验验证,该算法在不同的温度环境下具有较高的精度。  相似文献   

8.
张治国  孔庆  崔纳新 《电源技术》2011,35(10):1224-1226
为确保电动汽车电池组性能良好,延长电池使用寿命,必须对电池组进行合理有效的管理和控制,因而基于智能电池监测芯片DS2438设计了电动汽车电池组监测系统。DS2438集电池的温度、电压、电流和流进流出电池电量的测量于一体,节省了大量器件,简化了电路。根据DS2438的测量结果可以简单地估算出电池荷电状态(SOC),并对结果进行显示,作为电池充放电和故障诊断的依据,从而可以更加合理地利用电池,提高电池的可靠性。  相似文献   

9.
锂离子电池组合前后的特性研究   总被引:1,自引:0,他引:1  
张华辉  齐铂金  袁学庆  郑敏信 《电池》2007,37(4):294-296
为更好地使用锂离子电池组,更精确地估算电池的荷电状态(SOC),对锂离子电池组合前后进行了常温4.0 A充放电、常温7.5 A放电、-20℃下4.0A放电以及55℃下4.0A放电等实验测试.实验结果显示:锂离子电池成组后的充放电特性有所下降,电池组总容量下降为单体电池的90%左右,SOC偏低,工作电压的下降速率在放电末期急剧上升,可达平台区的50倍.对电池组的一致性进行了分析,得出锂离子电池成组时应充分考虑单体电池的一致性;在估算SOC时,采用电池组参数和单体电池参数相结合的方式.  相似文献   

10.
动力锂离子电池管理系统的研究进展   总被引:1,自引:0,他引:1  
锂离子电池是发展电动汽车的最具潜力的能源载体之一,从锂离子电池应用于电动汽车的研究现状出发,阐述了锂离子电池管理系统对于锂离子电池组的重要性以及研究的必要性。介绍了动力锂离子电池管理系统的发展现状,包括电池组外部参数的在线检测、SOC估计以及电池组的均衡,并对动力锂离子电池管理系统未来的发展方向做出了展望。  相似文献   

11.
为增强电动汽车(EV)电池管理系统功能,提出一种基于无线射频(RF)网络的电池组在线监测和管理设计方案,通过无线网络的分布式控制,实现了对磷酸铁锂电池参数精确监测及数据传输等功能,并采用多种算法相结合对电池荷电状态(SOC)进行估算,提高了估算精度.实验结果表明:本系统能很好地对电池组进行实时动态监控和有效管理,为设计新型电动汽车电池管理系统提供了重要依据.  相似文献   

12.
提出了应用模糊最小二乘支持向量机的方法对电池组的剩余电量(SOC)进行估算.为了与实际情况相一致,采用了prius车型在10-15典型工况下采集的电池在变电流充放电状态下的数据,以电池的工作电压、电流及温度为输入,电池SOC为输出建立了估算模型,使估算的最大误差小于1%,估算精度高,为一种有效的改进SOC实时估算的方法,此方法尤其适用于电动汽车变电流充放电状态.  相似文献   

13.
根据磷酸铁锂动力电池在电动汽车上的使用要求,提出一种基于CAN总线网络的电池组在线监测和管理设计方案,由一个中央管理模块和若干底层监控模块构成分布式结构,实现对磷酸铁锂电池信息数据监测、电池荷电状态(SOC)估计、控制局域网(CAN)通信及充电管理等功能.通过采用推广的卡尔曼滤波算法,不断估算和修正参数,提高了SOC估算精度.试验结果表明,系统能很好地对电池组进行实时动态监控和有效管理,且扩展性强,为设计新型电池管理系统提供了重要依据.  相似文献   

14.
何耀  黄东明  刘新天 《电源学报》2018,16(5):112-118
动力锂电池组的荷电状态SOC(state of charge)是整个电池管理系统的重要参数,能直接反映电动汽车剩余可行驶里程,因此如何精确地估计电池组的SOC值是至关重要的。由于电池组各单体电池的不一致性,以及电动汽车在行驶过程中的复杂环境,所以在电池组内单体电池负载电压的最小值Vmin模型的基础上运用统计学的方法,对模型中的各参数进行有关温度因素的拟合,并通过模拟汽车的实际行驶环境,在不同温度下进行实验,从而得到改进的Vmin模型;结合双卡尔曼滤波算法,实现对整个电池组的SOC估计。仿真和实验结果表明该方法对电池组SOC的估计精度有优越性。  相似文献   

15.
针对电动汽车锂离子蓄电池组SOC估算精度问题,采用卡尔曼滤波算法进行估算。建立电池组的状态空间模型,根据实际工况进行模型参数辨识,并实时校正电池组实际容量和库伦效率,通过仿真验证此模型的可行性和精度。仿真结果表明,该方法能够实时估算电池组SOC,最大误差仅为1.8%。卡尔曼滤波算法能够大大提高电池组SOC估算精度,通过改进此算法将能够适应电动汽车复杂行驶工况的安全保障要求。  相似文献   

16.
刘鹏  梁新成  黄国钧 《电池工业》2021,25(2):106-112
锂离子电池的性能是影响电动汽车动力性能最主要的因素之一,锂电池的荷电状态(SOC)是电动汽车电池管理系统(BMS)的核心,为整车电池组的控制提供判断基准.建立一个准确的锂离子电池模型是实现电池SOC在线监测的关键,SOC的精确程度直接影响着锂电池的输出特性、使用寿命和安全性能等方面.有鉴于此,本文对电化学模型、等效电路模型、神经网络模型以及热耦合模型的特点进行综述,最后对未来用于SOC精确在线估计的锂离子电池模型进行了展望.  相似文献   

17.
为有效地对电动汽车锂电池荷电状态(SOC)进行估算,采用自适应神经网络模糊推理系统(ANFIS)建立电池组电压降模型,再通过编写Matlab程序对BP神经网络进行训练,并用所建BP神经网络模型对SOC进行预测.经实验验证,此法精度较高且能有效预测电池的开路电压和SOC的映射关系,对延长电池寿命具有重要意义.  相似文献   

18.
在电池储能系统的实际工程中,电池组荷电状态(state of charge,SOC)估算精度越来越受重视。电池组容量、运行环境、循环时间和充放电倍率等都将影响电池组的SOC估算精度,采用单一的电池模型和数据模型很难获得准确的SOC。提出了一种基于信息融合技术的锂离子电池SOC估算方法,主要基于开路电压(open circuit voltage,OCV)-SOC曲线进行。根据锂离子电池运行特性,把OCV-SOC曲线空间划分为锂电池稳定运行区间、识别校正区间、过充区间和过放区间,并据此重新定义锂离子电池运行模式。然后根据其运行模式,在不同运行区间内对锂电池的估算模型进行切换和优化。采取基于信息融合的SOC估算方法,不断修正消除估算模型在运行状态下产生的各种误差,得到较为精确的SOC估算值。最后搭建实验平台,以某储能电站的实际储能工况对该算法进行实验验证,结果表明,上述SOC估算算法在实际锂电池储能系统应用中具有较强的可行性和实用性。  相似文献   

19.
施辉伟  杨伟  冯乾  王红 《电源技术》2016,(2):361-364
电动汽车电池荷电状态(SOC)的快速精确估算是电池管理系统的核心技术。针对电动汽车电池的工作特性,在Thevenin电池模型的基础上,利用扩展卡尔曼滤波(EKF)算法,在不同温度、放电倍率及初始误差的情况下实现了对电动汽车电池SOC的精准估算,并与复合电池模型进行了对比仿真实验。实验表明,采用基于Thevenin电池模型的EKF滤波算法可以快速完成电池SOC的精准估算,误差在5%以内。  相似文献   

20.
估算能量状态是电池管理系统的主要功能之一,因为对于电动汽车而言能量状态是预测续航里程、能量管理分配和优化以及实现电池组均衡的的重要参数。传统的功率积分方法,其准确性依赖于较高精度的电压、电流传感器,因而成本高。因此,基于改进的戴维南电路模型,将扩展卡尔曼滤波法(EKF)用来估算电池的剩余能量状态和荷电状态,且使用遗忘递推最小二乘法在线实时辨识模型参数。结果表明,此方法具有较好的估算精度,在复杂动态电流测试工况估算误差可以保持在2%以内,而且能量状态(SOE)比荷电状态(SOC)更适合反映能量的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号