首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objectives

To demonstrate the advantages of radial k-space trajectories over conventional Cartesian approaches for accelerating the acquisition of vessel-selective arterial spin labeling (ASL) dynamic angiograms, which are conventionally time consuming to acquire.

Materials and methods

Vessel-encoded pseudocontinuous ASL was combined with time-resolved balanced steady-state free precession (bSSFP) and spoiled gradient echo (SPGR) readouts to obtain dynamic vessel-selective angiograms arising from the four main brain-feeding arteries. Dynamic 2D protocols with acquisition times of one minute or less were achieved through radial undersampling or a Cartesian parallel imaging approach. For whole-brain dynamic 3D imaging, magnetic field inhomogeneity and the high acceleration factors required rule out the use of bSSFP and Cartesian trajectories, so the feasibility of acquiring 3D radial SPGR angiograms was tested.

Results

The improved SNR efficiency of bSSFP over SPGR was confirmed for 2D dynamic imaging. Radial trajectories had considerable advantages over a Cartesian approach, including a factor of two improvements in the measured SNR (p < 0.00001, N = 6), improved distal vessel delineation and the lack of a need for calibration data. The 3D radial approach produced good quality angiograms with negligible artifacts despite the high acceleration factor (R = 13).

Conclusion

Radial trajectories outperform conventional Cartesian techniques for accelerated vessel-selective ASL dynamic angiography.

  相似文献   

2.
Purpose: Two ultrafast phase-contrast (PC) data acquisition strategies, multishot echo-planar imaging (EPI)-PC and segmentedk-space fast gradient-echo PC (FASTCARD-PC) were evaluated with regard to their measurement accuracy. Materials and Method: Flow measurements of the ascending and descending aorta were acquired in 10 healthy volunteers with an electrocardiogram (ECG)-triggered eight-shot EPI-PC sequence (TR/TE/flip 16/7.4/45°, 32-ms flow-phase interval, 2×2 mm in plane resolution), and FASTCARD-PC (six it-lines per band, TR/TE/flip 11/6.1/45°, 32-ms flow-phase interval, 2 × 1 mm in plane resolution). These were compared to flow-volume data acquired with conventional cine-PC (TR/TE/flip 24/7/45°, 48-ms flow-phase interval, 2 × 1 mm in plane resolution). Using cine-PC as a gold standard, the measurement accuracy of FASTCARD-PC and EPI-PC were determined. Results: Both EPI-PC and FASTCARD-PC significantly reduced data acquisition times compared to cine PC. EPI-PC flow measurements correlated well with aortic cine-PC flow-volume determinations (r=0.98). Reflecting poorer temporal resolution, FASTCARD-PC measurements were less accurate (p<0.05), evidenced by poor correlation with cine-PC data (r=0.62). Conclusion: Ultrafast PC measurements are possible. In contrast to the segmentedk-space PC technique, which is limited in temporal resolution, multishot EPI-PC provides high measurement accuracy in pulsatile vessels while keeping the image acquisition interval short enough for a comfortable breath-hold.  相似文献   

3.
Purpose: To evaluate whether time-resolved 3D MR-angiography at 3T with a net acceleration factor of eight is applicable in clinical routine and to evaluate whether good image quality and a low artifact level can be achieved with a temporal update rate that allows for additional information on pathologies. Materials and methods: Thirty-one consecutive patients underwent time-resolved 3D contrast-enhanced MR-angiography on a 3T system. Imaging consisted of accelerated 3D gradient echo sequences combining parallel imaging with an acceleration factor of four, partial Fourier acquisition along phase and slice encoding direction, and twofold temporal acceleration using view sharing. Data volumes representing the arterial and venous contrast phases were independently evaluated by two experienced radiologists by grading of image quality and artifact level on a 0–3 scale. Results: Time-resolved MR-angiography was successfully performed in all subjects without the need for contrast agent bolus timing. Excellent arterial (average score = 2.65 ± 0.32) and good venous (average score = 2.56 ± 0.28) diagnostic image quality and little image degrading due to artifacts (average score = 2.20 ± 0.16) were confirmed by both independent readers (agreement in 65.2% of all evaluations). In 14 patients vascular pathologies were identified in the arterial phases. In eight examinations temporal resolution and depiction of contrast agent dynamics provided additional information about pathology. Discussion: Without the necessity for additional bolus timing, time-resolved 3D contrast-enhanced MR-angiography with imaging acceleration along both the spatial encoding direction and temporal domain revealed excellent diagnostic image quality in neurovascular and thoracic imaging. Despite the limited spatial resolution as compared to high-resolution imaging of the carotid artery bifurcation, the results demonstrate the applicability of contrast-enhanced MR-angiography in thoracic and abdominal MRA as well as cervical imaging with a temporal update rate allowing for additional information on pathologies. Future studies may include an evaluation of optimal trade-offs between spatial and temporal resolution, different acceleration factors and a comparison to the gold-standard for accuracy.  相似文献   

4.
Object: Multiple contrasts are often helpful for a comprehensive diagnosis. In 3D abdominal MRI, breath-hold techniques are preferred for single contrast acquisitions to avoid respiratory artifacts. In this paper, highly accelerated parallel MRI is used to acquire large 3D abdominal volumes with two different contrasts within a single breath-hold. Material and methods: In vivo studies have been performed on six healthy volunteers, combining T 1- and T 2-weighted, gradient- or spin-echo based scans, as well as water/fat resolved imaging in a single breath-hold. These 3D scans were acquired with an acceleration factor of six, using a prototype 32-element receive array. Results: The presented approach was tested successfully on all volunteers. The whole liver area was covered by a FOV of 350 × 250 × 200 mm3 for all scans with reasonable spatial resolution. Arbitrary scan protocols generating different contrasts have been shown to be combinable in this single breath-hold approach. Good spatial correspondence with negligible spatial offset was achieved for all different scan combinations acquired in overall breath-hold times between 15 and 25 s. Conclusion: Enabled by highly parallel imaging technology, this study demonstrates the technical feasibility and the promising image quality of single breath-hold dual contrast MRI.  相似文献   

5.
We have worked on multi-dimensional magnetic resonance imaging (MRI) data acquisition and related image reconstruction methods that aim at reducing the MRI scan time. To achieve this scan-time reduction we have combined the approach of ’increasing the speed’ ofk-space acquisition with that of ‘deliberately omitting’ acquisition ofk-space trajectories (sparse sampling). Today we have a whole range of (sparse) sampling distributions and related reconstruction methods. In the context of a European Union Training and Mobility of Researchers project we have decided to integrate all methods into one coordinating software system. This system meets the requirements that it is highly structured in an object-oriented manner using the Unified Modeling Language and the Java programming environment, that it uses the client-server approach, that it allows multi-client communication sessions with facilities for sharing data and that it is a true distributed computing system with guaranteed reliability using core activities of the Java Jini package.  相似文献   

6.
Diffusion-weighted imaging of the spine using radialk-space trajectories   总被引:2,自引:0,他引:2  
Introduction Diffusion-weighted MR imaging (DWI) of the spine requires robust imaging methods, that are insensitive to susceptibility effects caused by the transition from bone to soft tissue and motion artifacts due to breathing, swallowing, and cardiac motion. The purpose of this study was to develop a robust imaging method suitable for DWI of the spine. Methods and subjects A radialk-space spin echo sequence has been implemented, which is sell-navigating because each acquisition line passes through the origin ofk-space. Influence of cardiac motion and associated flow of cerebrospinal fluid is minimized by cardiac gating with a finger photoplethysmograph. The sequence has been tested on a 1.5T system. Diffusion-weighted images of six normal volunteers were acquired in the sagittal plane with 4b values between 50 and 500 s mm−2. Because of the symmetries of the cord, diffusion measurements in the head-foot (HF) or left-right (LR) directions were sufficient to measure the dominant effects of anisotropy. Results The apparent diffusion coefficients (ADCs) measured, respectively, in the LR and HF directions were (0.699 ± 0.050) × 10−3 and (1.805 ± 0.086) × 10−3 mm2 s−1 in the spinal cord. (1.588 ± 0.082) × 10−3 and (1.528 ± 0.052) × 10−3 mm2 s−1 in the intervertebral disks, and (0.346 ± 0.047) × 10−3 and (0.306 ± 0.035) × 10−3 mm2 s−1 in the vertebrae of the cervicothoraeic spine. Conclusion Diffusion-weighted spin echo sequences with radial trajectories ink-space provide a means of achieving robust, high quality diffusion-weighted imaging and measuring ADCs in the spine. The application of the diffusion-weighting gradients in different directions allows diffusion anisotropy to be measured.  相似文献   

7.
Objective Density weighted phase-encoding has proven to be a highly efficient method for k-space sampling as it improves the localization properties and increases the signal-to-noise ratio for extended samples at the same time. But either density weighted imaging lengthens the minimum scan time or, if the Nyquist criterion is violated in parts of the sampled k-space, undersampling artefacts occur. Purpose of this work was to combine density weighted imaging and parallel imaging techniques to improve the spatial response function and consequently the signal-to-noise ratio without spoiling image quality by undersampling artefacts. Materials and Methods Images were acquired with parallel acquisition for effective density weighted imaging (PLANED imaging) and compared to results sampled with conventional Cartesian phase-encoding with the same spatial resolution and the same number of excitations. Results Both in vivo and phantom measurements recorded with the PLANED method revealed a considerable enhancement of the signal-to-noise ratio and a remarkable reduction of Gibbs artefacts compared to standard Cartesian imaging. Conclusion It has been demonstrated that PLANED improves image quality by suppressing truncation artefacts and increasing the SNR without lengthening the measurement time.  相似文献   

8.
Objective The aim of this study is to present a new approach for making quantitative single-voxel T 2 measurements from an arbitrarily shaped region of interest (ROI), where the advantage of the signal-to-noise ratio (SNR) per unit time of the single-voxel approach over conventional imaging approach can be achieved. Materials and methods Two-dimensional (2D) spatially selective radiofrequency (RF) pulses are proposed in this work for T 2 measurements based on using interleaved spiral trajectories in excitation k-space (pinwheel excitation pulses), combined with a summed Carr–Purcell Meiboom–Gill (CPMG) echo acquisition. The technique is described and compared to standard multi-echo imaging methods, on a two-compartment water phantom and an excised brain tissue. Results The studies show good agreement between imaging and our method. The measured improvement factors of SNR per unit time of our single-voxel approach over imaging approach are close to the predicted values. Conclusion Measuring T 2 relaxation times from a selected ROI of arbitrary shape using a single-voxel rather than an imaging approach can increase the SNR per unit time, which is critical for dynamic T 2 or multi-component T 2 measurements.  相似文献   

9.
Objective: Volumetric evaluation of the myocardial viability post-infarction in rats using 3D in vivo MR imaging at 7 T using injection of an extracellular paramagnetic contrast agent and intravascular superparamagnetic iron oxide nanoparticles in the same imaging session. Materials and methods: Five hours after induction of permanent myocardial infarction in rats (n=6), 3D in vivo T1- and T2-weighted MR Imaging was performed prior to and after Gd-DOTA injection (0.2 mmol/kg) and prior to and after nanoparticle injection (5 mg Fe/kg) to assess infarct size and myocardial viability. Results: 3D MR Imaging using a successive contrast agent injection showed a difference of infarct size after Gd-DOTA injection on T1-weighted images compared to the one measured on T2-weighted images after Gd-DOTA and nanoparticle injection. Conclusion: The use of 3D T1- and T2-weighted MR Imaging using a double contrast agents protocol made possible the accurate characterization of myocardial infarction volume and allowed the detection of myocardial viability post-infarction in rats  相似文献   

10.
Since detailed knowledge regarding the pathophysiological properties—which in turn are responsible for differences in contrast enhancement—remain fairly undetermined, it was the aim of this study (i) to examine the association of standard and pharmacokinetic analysis of time-intensity curves in dynamic MRI with histomorphological markers of tumor angiogenesis (microvessel density [MVD]; vascular endothelial growth factor [VEGF]) and (ii) to determine the ultimate value of a histomorphological and a dynamic MRI approach by correlation of those data with disease outcome in patients with primary cancer of the uterine cervix. Pharmacokinetic parameters (amplitude A, exchange rate constantk 21) and standard parameters (maximum signal intensity (SI)-increase, [SI-I] over baseline and steepest SI-upslope, per second [SI-U/s]) were calculated from contrast-enhanced dynamic MR imaging series in 37 patients with biopsy-proven primary cervical cancer. On the surgical whole mount specimens, histomorphological markers of tumor angiogenesis (MVD, VEGF) were compared with similar sized and positioned regions-of-interest (ROIs) on the MRI-derived parameters. For MRI and histomorphological data, Kaplan-Meier survival curves were calculated and compared using log-rank statistics. A significant association was found betweenMVD and amplitudeA (P<0.01) andSI-I (P<0.05). No significant relationships were observed between theVEGF expression and all dynamic MRI parameters. Kaplan-Meier curves based onk 21 and SI-U/s showed that tumors with highk 21 andSI-U/s values had a significantly (P<0.05, 0.001, respectively) worse disease outcome than tumors with lowk 21 andSI-U/s values. None of the histomorphological gold standard markers for assessing tumor angiogenesis (MVD, VEGF) had any significant power to predict patient survival. It is concluded that (1) the pathophysiological basis for differences in dynamic MRI isMVD but not VEGF-expression; (2) a functional, dynamic MRI approach (both standard and a pharmacokinetic analysis) may be better suited to assess angiogenic activity in terms of patient survival than current histomorphological-based markers of tumor angiogenesis; and [3] compared with standard analysis, a simple pharmacokinetic analysis of time-intensity curves is not superior to assessMVD or patient survival.  相似文献   

11.
Cardiac MR cine imaging during breath hold is a compromise between spatial and temporal resolution and duration of breath hold. Especially for sick patients who have problems holding their breath, a short acquisition time is mandatory for all sequences. A combination of Auto-SENSE parallel imaging and view-sharing was implemented for fast cine imaging of the human heart and applied to healthy volunteers. Compared to conventional Fourier imaging, data acquisition could be accelerated by a factor of 3.6. Neither a pre-scan nor additional lines in k-space are required to generate the sensitivity maps in Auto-SENSE.  相似文献   

12.
Objective The objective of this study was to compare two different schemes for long-T 2 component suppression in ultrashort echo-time (UTE) imaging. The aim was to increase conspicuity of short-T 2 components accessible by the UTE technique. Materials and methods A “dual-echo” and a magnetization-preparation approach for long-T 2 and fat suppression were implemented on clinical scanners. Both techniques were compared in 3D UTE exams on healthy volunteers regarding short-T 2 Signal-to-noise ratio (SNR), long-T 2 suppression quality, and scan efficiency. A quantitative SNR evaluation was performed using ankle scans of six volunteers. T 2 suppression profiles were simulated for both approaches to facilitate interpretation of the observations. Results At 1.5 T, both techniques perform equally well in suppressing long-T 2 components and fat. Magnetization preparation requires more shimming effort due to the use of narrow-band pulses, while the “dual-echo” technique requires a post-processing step to form a subtraction image. For scans with a short repetition time (TR), the “dual-echo” approach is much faster than the magnetization preparation, which depends on slow T 1 recovery between preparation steps. The SNR comparison shows slightly higher short-T 2 SNR for the “dual-echo” approach. At 3.0 T, magnetization preparation becomes more challenging due to stronger off-resonance effects. Conclusion Both techniques are well suited for long-T 2 suppression and offer comparable short-T 2 SNR. However, the “dual-echo” approach has strong advantages in terms of scan efficiency and off-resonance behavior.  相似文献   

13.

Objective

Echo-planar imaging (EPI) with CYlindrical Center-out spatiaL Encoding (EPICYCLE) is introduced as a novel hybrid three-dimensional (3D) EPI technique. Its suitability for the tracking of a short bolus created by pseudo-continuous arterial spin labeling (pCASL) through the cerebral vasculature is demonstrated.

Materials and methods

EPICYCLE acquires two-dimensional planes of k-space along center-out trajectories. These “spokes” are rotated from shot to shot about a common axis to encode a k-space cylinder. To track a bolus of labeled blood, the same subset of evenly distributed spokes is acquired in a cine fashion after a short period of pCASL. This process is repeated for all subsets to fill the whole 3D k-space of each time frame.

Results

The passage of short pCASL boluses through the vasculature of a 3D imaging slab was successfully imaged using EPICYCLE. By choosing suitable sequence parameters, the impact of slab excitation on the bolus shape could be minimized. Parametric maps of signal amplitude, transit time, and bolus width reflected typical features of blood transport in large vessels.

Conclusion

The EPICYCLE technique was successfully applied to track a short bolus of labeled arterial blood during its passage through the cerebral vasculature.
  相似文献   

14.
MR CAT scan: a modular approach for hybrid imaging   总被引:1,自引:1,他引:0  
In this study, a modular concept for NMR hybrid imaging is presented. This concept essentially integrates different imaging modules in a sequential fashion and is therefore called CAT (combined acquisition technique). CAT is not a single specific measurement sequence, but rather a sequence design concept whereby distinct acquisition techniques with varying imaging parameters are employed in rapid succession in order to coverk-space. The power of the CAT approach is that it provides a high flexibility toward the acquisition optimization with respect to the available imaging time and the desired image quality. Important CAT sequence optimization steps include the appropriate choice of thek-space coverage ratio and the application of mixed bandwidth technology. Details of both the CAT methodology and possible CAT acquisition strategies, such as FLASH/EPIRARE/EPI-and FLASH/BURST-CAT are provided. Examples from imaging experiments in phantoms and healthy volunteers including mixed bandwidth acquisitions are provided to demonstrate the feasibility of the proposed CAT concept.  相似文献   

15.
AUTO-SMASH: A self-calibrating technique for SMASH imaging   总被引:9,自引:0,他引:9  
Recently a new fast magnetic resonance imaging strategy, SMASH, has been described, which is based on partially parallel imaging with radiofrequency coil arrays. In this paper, an internal sensitivity calibration technique for the SMASH imaging method using self-calibration signals is described. Coil sensitivity information required for SMASH imaging is obtained during the actual scan using correlations between undersampled SMASH signal data and additionally sampled calibration signals with appropriate offsets ink-space. The advantages of this sensitivity reference method are that no extra coil array sensitivity maps have to be acquired and that it provides coil sensitivity information in areas of highly non-uniform spin-density. This auto-calibrating approach can be easily implemented with only a small sacrifice of the overall time savings afforded by SMASH imaging. The results obtained from phantom imaging experiments and from cardiac studies in nine volunteers indicate that the self-calibrating approach is an effective method to increase the potential and the flexibility of rapid imaging with SMASH.  相似文献   

16.
The crystal structure and electromechanical properties of two ternary ceramic Na0.5Bi0.5TiO3- K0.5Bi0.5TiO3-BaTiO3 (NBT-KBT-BT) systems were investigated. A gradual change in crystalline structure and microstructure with the increase of KBT and BT concentrations were observed. It was ascertained that the rhombohedral-tetragonal morphtropic phase boundary (MPB) lies in the range of 0.024 ≰ x ≰ 0.030 for (1–5x) NBT-4x KBT-x BT system and 0.025 ≰ y ≰ 0.035 for (1 − 3y) NBT—2y KBT—y BT system at room temperature. The piezoelectric constant d33 and electromechanical coupling factor kp of the ceramics attain a maximum value of 150 pC/N and 0.298, respectively. The MPB phase diagram of NBT-KBT-BT ternary system was determined by phase analysis of XRD patterns from calcined specimens. The ferroelectric properties of the (1 − 5x) NBT—4x KBT—x BT system have been characterized. The ternary system ceramics have relatively high Curie temperature Tc.  相似文献   

17.
Objective

To refine a new technique to measure respiratory-resolved left ventricular end-diastolic volume (LVEDV) in mid-inspiration and mid-expiration using a respiratory self-gating technique and demonstrate clinical feasibility in patients.

Materials and methods

Ten consecutive patients were imaged at 1.5 T during 10 min of free breathing using a 3D golden-angle radial trajectory. Two respiratory self-gating signals were extracted and compared: from the k-space center of all acquired spokes, and from a superior–inferior projection spoke repeated every 64 ms. Data were binned into end-diastole and two respiratory phases of 15% respiratory cycle duration in mid-inspiration and mid-expiration. LVED volume and septal–lateral diameter were measured from manual segmentation of the endocardial border.

Results

Respiratory-induced variation in LVED size expressed as mid-inspiration relative to mid-expiration was, for volume, 1 ± 8% with k-space-based self-gating and 8 ± 2% with projection-based self-gating (P = 0.04), and for septal–lateral diameter, 2 ± 2% with k-space-based self-gating and 10 ± 1% with projection-based self-gating (P = 0.002).

Discussion

Measuring respiratory variation in LVED size was possible in clinical patients with projection-based respiratory self-gating, and the measured respiratory variation was consistent with previous studies on healthy volunteers. Projection-based self-gating detected a higher variation in LVED volume and diameter during respiration, compared to k-space-based self-gating.

  相似文献   

18.
2D sense for faster 3D MRI   总被引:10,自引:0,他引:10  
Sensitivity encoding in two spatial dimensions (2D SENSE) with a receiver coil array is discussed as a means of improving the encoding efficiency of three-dimensional (3D) Fourier MRI. it is shown that in Fourier imaging with two phase encoding directions, 2D SENSE has key advantages over one-dimensional parallel imaging approaches. By exploiting two dimensions for hybrid encoding, the conditioning of the reconstruction problem can be considerably improved, resulting in superior signal-to-noise behavior. As a consequence, 2D SENSE permits greater scan time reduction, which particularly benefits the inherently time-consuming 3D techniques. Along with the principles of 2D SENSE imaging, the properties of the technique are discussed and investigated by means of simulations. Special attention is given to the role of the coil configuration, yielding practical setups with four and six coils. The in vivo feasibility of the two-dimensional approach is demonstrated for 3D head imaging, permitting four-fold scan time reduction. Presented in parts at the 16th meeting of the ESMRMB, Sevilla, September, 1999.  相似文献   

19.

Object

This work seeks to examine practical aspects of in vivo imaging when spatial encoding is performed with three or more encoding channels for a 2D image.

Materials and methods

The recently developed 4-Dimensional Radial In/Out (4D-RIO) trajectory is compared in simulations to an alternative higher-order encoding scheme referred to as O-space imaging. Direct comparison of local k-space representations leads to the proposal of a modification to the O-space imaging trajectory based on a scheme of prephasing to improve the reconstructed image quality. Data were collected using a 4D-RIO acquisition in vivo in the human brain and several image reconstructions were compared, exploiting the property that the dense encoding matrix, after a 1D or 2D Fourier transform, can be approximated by a sparse matrix by discarding entries below a chosen magnitude.

Results

The proposed prephasing scheme for the O-space trajectory shows a marked improvement in quality in the simulated image reconstruction. In experiments, 4D-RIO data acquired in vivo in the human brain can be reconstructed to a reasonable quality using only 5?% of the encoding matrix??massively reducing computer memory requirements for a practical reconstruction.

Conclusion

Trajectory design and reconstruction techniques such as these may prove especially useful when extending generalized higher-order encoding methods to 3D images.  相似文献   

20.
Purpose To investigate the relative role of high resolution (spatial or temporal) magnetic resonance angiography (MRA) sequence and of contrast agent properties in the evaluation of high-degree arterial stenosis. Methods We qualitatively and quantitatively studied both 50 and 95% (300 μm diameter) stenosis of a 6 mm arterial phantom with two contrast agents (CA), Gd-DOTA (r1 =2.9 mM−1 s−1) versus P760 (r1 =25 mM−1 s−1) at several CA concentrations, including arterial peak concentration after injection of either a single or double dose of CA, using either a high temporal (booster) or high spatial (HR) resolution 3D MRA sequences. Experimental data were then compared to theoretical data. Results With the 3D HR sequence, both visual and quantitative analysis were significantly better compared to the 3D booster sequence, at each phantom diameter. Quantitative analysis was significantly improved by injection of a double versus a single dose of each CA (Gd-DOTA or P760), primarily in high degree stenosis. Conclusion Combined MRA spatial resolution and high CA efficiency are mandatory to correctly evaluate high degree stenosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号