首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
IEEE1588时钟同步协议在数字化变电站中的应用探讨   总被引:2,自引:2,他引:0  
针对IEC61850对变电站内不同应用层面的同步精度要求,比较了硬接线同步方式、简单网络时间协议(SNTP)和IEEE1588精确时间协议(PTP)的优缺点.介绍了IEEE1588时间协议的时钟类型以及它们之间的关系,详细分析了IEEE1588时间同步的基本原理.应用目前硬件支持条件,论证了在数字化变电站中应用IEEE...  相似文献   

2.
基于IEEE 1588的数字化变电站时钟同步技术研究   总被引:33,自引:4,他引:29  
IEEE 1588是关于网络测量和控制系统的精密时间协议(precision time protocol,PTP)标准,其网络对时精度可达亚ms级。文章介绍了IEEE 1588标准定义的高精度时钟同步的原理以及PTP时钟模型,针对遵循IEC 61850标准的变电站通信网络拓扑结构,提出了IEEE 1588在数字化变电站内的应用方案,讨论了各方案的优缺点,并给出了时钟设备的冗余配置方法及其功能实现。文章从理论上分析了IEEE 1588标准的时钟同步误差,最后从全网的角度探讨了该标准的具体应用策略。  相似文献   

3.
精确时钟同步协议最佳主时钟算法   总被引:6,自引:3,他引:3  
精确时钟同步协议(IEEE1588)是关于网络测量和控制系统的时间协议,可达到较高的网络对时精度,实现高精度的时间同步.最佳主时钟算法(BMC)是IEEE1588的最主要的核心技术之一,按IEEE1588协议进行时钟同步的系统通过运行最佳主时钟算法来选择系统中的主时钟,其他时钟全以主时钟作为参考进行时钟同步.分析了精确时钟同步协议最佳主时钟算法的组成、相关概念及原理,根据算法的原理和实际要求设计了最佳主时钟算法功能模块,在Linux下用C语言编写程序,实现了最佳主时钟算法,给出了模块的设计流程图,为测试模块的功能,设计了测试验证图.通过验证,所设计的程序能实现最佳主时钟算法.  相似文献   

4.
傅钦翠 《电气应用》2011,(21):42-45
随着数字化变电站的发展,变电站设备在线监测系统的未来发展趋势是采用IEC 61850实现无缝通信,由于空间距离和节点的变化,使现场采样值传输的同步精度变成一个难题。以IEEE 1588标准中的精确时间协议(PTP)为基础,通过使用整合IEEE 1588标准中核心部分的以太网物理层控制芯片DP83640,使得采用以太网架构的分布式变电站设备在线监测系统主从节点上的时钟达到精确的时间同步,同时缩短了设计周期。  相似文献   

5.
IEEE1588是关于网络测量和控制系统的精密时间协议(Precision Time Protocol,PTP)标准,其网络对时精度可达亚μs级.提出一种利用主单元中IEEE1588对时芯片的高精度时钟发生器,采用1 588对时协议实现各个子单元采样数据同步,构建出智能变电站分布式母线差动保护的实现方案,描述了采样数据...  相似文献   

6.
智能变电站分布式母线保护实现方案   总被引:2,自引:0,他引:2  
IEEE1588是关于网络测量和控制系统的精密时间协议(Precision Time Protocol,PTP)标准,其网络对时精度可达亚μs级.提出一种利用主单元中IEEE1588对时芯片的高精度时钟发生器,采用1 588对时协议实现各个子单元采样数据同步,构建出智能变电站分布式母线差动保护的实现方案,描述了采样数据的同步处理及功能分布等.该方案的特点是差动保护不依赖于外部时钟的影响,可靠性高,符合国网公司的技术规范要求.  相似文献   

7.
随着基于以太网技术在分布式系统的广泛应用,分布式系统时钟同步问题迫切的需要解决.文章提出了基于Cortex-M3的微控制器LM3S8962的IEEE 1588时钟同步协议的实现方案,介绍了LM3S8962芯片硬件时间戳的生成和IEEE 1588从时钟的实现,并分析了影响时钟同步精度的因素.并最终利用LM3S8962硬件平台,实现了IEEE 1588协议.测试结果表明,利用M3芯片内部对IEEE 1588协议硬件支持的功能,可以达到系统高精度的时间同步要求.  相似文献   

8.
基于工业以太网的分布式系统为实现高精度的同步数据采集和控制,对时钟同步提出了较高的要求。对基于嵌入式软件的时钟同步方案中同步精度较低的原因进行分析,提出了一种基于现场可编程门阵列(FPGA)的硬件时钟同步方法。使用FPGA对IEEE1588协议进行解析,采用FPGA和硬件描述语言设计时间戳获取、晶振频率补偿和时钟同步算法等模块。对基于工业以太网的分布式系统进行了测试,结果表明系统达到了亚微秒级的精度。  相似文献   

9.
基于IEEE1588标准,介绍了精确时钟协议的时钟类型与报文种类。分析了主、从时钟间采用同步报文实现时钟同步的机制,以及同步间隔与网络负荷、同步精度之间的关系,指出了同步紧随报文的作用和使用条件。给出了报文时间标记点在以太网中的准确定义、PTP子域到以太网多播地址之间的映射和PTP报文到以太网报文之间的映射,提供了精确时钟同步协议在以太网中实现的具体方法。  相似文献   

10.
PTP1588协议的分析   总被引:4,自引:0,他引:4  
对精确时钟同步协议(Procision Time Protocol,PTP)的工作原理、时钟模型、延时测量机制、传输协议栈、通信模式进行了深入分析研究.在协议分析的基础上,结合数字化变电站过程层网络的特点和时间同步要求,分析了PTP1588在数字化变电站过程层网络应用的关键点.总结了PTP1588协议的应用思路--PTP1588是一个通用的时间同步协议,对于一个特定应用,应根据此特定应用的网络特点和同步指标要求,在PTP1588协议中选取合适的机制和参数来构建此特定应用的PTP1588时间同步方案.  相似文献   

11.
为解决配电网中配电终端的同步对时问题,提出利用网络测量和控制系统精确时钟同步协议标准(standard for a precision clock synchronization protocol for network measurement and control system,IEEE 1588)实现配电终端同步对时的方法。深入研究IEEE 1588中的时钟类型、IEEE 1588报文格式、延迟请求响应机制和IEEE 1588时钟同步过程,并提供基于IEEE 1588的配电网同步对时网络的实例。通过系统测试,对精度、馈线自动化测控终端(feeder terminal unit,FTU)的B码对接性能和同步可靠性进行全面检测,证明了基于IEEE 1588的配电网同步对时网络的优越性。  相似文献   

12.
为确保支持 IEEE 1588精密时间协议(precision time protocol,PTP)的各厂家智能设备能互连互通及稳定时间同步,对此类设备进行 IEEE 1588一致性测试是十分必要的.为此在简要介绍 IEEE C37.238—2011(电力 PTP Profile)基础上,提出了电力系统 IEEE 1588一致性测试的测试方法,分析了 IEEE 1588一致性测试应具备的测试结构,描述了基于测试案例的一致性测试流程,详细说明了 IEEE 1588一致性测试的测试内容,总结了 IEEE 1588一致性测试的实施关键点  相似文献   

13.
智能变电站和智能电网的发展对电力系统时钟同步提出了更高的要求,文中阐述了网络时钟同步的基本方法,并着重分析了IEEE 1588实现高精度时钟同步的主要原理.在研制IEEE 1588主时钟、从时钟和交换机的基础上,对点对点IEEE 1588和网络IEEE 1588两种同步方案进行了实验验证.结果表明,两种时钟同步方式均可...  相似文献   

14.
基于IEEE 1588标准的变电站同步网络的研究   总被引:2,自引:0,他引:2  
介绍了国内现阶段数字化变电站时钟同步技术的应用,比较了现阶段变电站时钟同步技术的技术特点。针对新型数字化变电站高精度时钟同步指标要求,引入能达到亚微秒级对时精度的IEEE 1588时钟同步对时技术,阐述了IEEE1588时钟同步技术原理。基于IEEE1588时钟同步技术,讨论了数字化变电站站内对时网络的3种配置方法。分析了IEEE1588对时技术用于区域电网的局限性,综合全球定位系统(GPS)对时技术和IEEE1588技术提出了一种现阶段最优化的变电站同步时钟网络配置方案。  相似文献   

15.
IEEE1588精密时钟同步协议的分析与实现   总被引:3,自引:1,他引:2  
LXI(LAN-based Extensions for Instrumentation)技术的提出进一步推动了测试测量领域的发展,基于IEEE1588精确时钟同步协议的时间同步触发是LXI B类仪器的一个主要特点。本文介绍了IEEE1588精密时钟协议,详细分析了其同步原理,并介绍了一种实现IEEE1588协议的方案,从时钟通过与主时钟交换报文获取时间戳,根据时间戳计算出与主时钟的时间偏差并对自己的时钟进行修正。最后对所设计的系统进行了测试,测试结果显示系统能实现时钟同步。  相似文献   

16.
基于IEEE 1588实现变电站过程总线采样值同步新技术   总被引:32,自引:4,他引:32  
介绍并分析了网络测量和控制系统的精确时钟同步协议IEEE1588,通过与目前应用广泛的网络时间协议(NTP)相比较,指出其高精度时钟同步实现机制的特殊性。针对IEC61850所定义的过程总线上采样值高精度同步要求,提出了一种基于IEEE1588的合并单元同步实现的新方案。在此方案中,利用现场可编程门阵列(FPGA)对IEEE1588同步报文时标生成点进行精确确定,IEEE1588同步协议的实现利用微控制器完成。  相似文献   

17.
基于IEEE 1588的变电站过程层采样值同步技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了提高变电站过程层网络采样值的同步精度,详细分析了基于IEEE 1588精确同步协议的变电站过程层采样值同步技术的原理与实现方式。分析对比了瞬时值差动与矢量差动的采样精度,研究了同步误差对差动保护采样值精度的影响;通过分析IEEE 1588协议同步的实现过程,并与毫秒级别对时协议NTP进行对比,指出了IEEE 1588实现所涉及到的关键技术。通过分析基于IEEE 1588过程层采样值同步在实际工程应用中的实现方式,论证了IEEE 1588协议的采样精度达到亚微秒级别,能够有效减小多端同步采样的精度,对于变电站安全稳定运行具有十分重要的意义。  相似文献   

18.
IEEE 1588精确时间同步协议的应用方案   总被引:13,自引:4,他引:9  
阐述了IEEE 1588协议比以往时间同步方式如网络时间协议(NTP)的优点,分析了IEEE 1588协议的2个核心算法———最佳主时钟(BMC)算法和本地时钟同步(LCS)算法,提出了解决IEEE 1588协议在实际应用中不能满足其假设前提的解决方法,在实验室环境中利用ARM9200平台实现了IEEE 1588协议并进行了测试,结果表明其明显优于NTP。该研究工作对于IEEE 1588协议在电力系统中的实际应用具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号