首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从Li Fe PO4/C电池负极角度出发,利用扫描电子显微镜(SEM)、拉曼光谱仪(Raman)、X射线光电子能谱仪(XPS)、电感耦合等离子体测试仪(ICP)和X射线衍射光谱仪(XRD)等分析手段研究了此电池储存后的容量衰减机理。结果表明,高温和长期存储为电池负极片的劣化提供条件,促使电池负极石墨表面发生大量的副反应,消耗了正极活性锂和电解质中的锂盐,在负极表面形成不可逆锂,造成电池活性锂离子损失,电池容量衰减。  相似文献   

2.
研究了叠片型相碳微球/石墨//LiNi_(0.3)Co_(0.3)Mn_(0.3)O_2储能用锂离子电池高温循环电化学性能和容量衰减机理。运用恒流恒压模式进行充放电测试,利用微分容量分析正极和负极电位与容量变化关系,电化学交流阻抗谱分析电池、正负极在循环过程阻抗变化趋势,扫描电子显微镜(SEM)和X射线粉末衍射光谱测试分析(XRD)循环前后正极与负极材料形貌和结构变化。结果表明,电池容量的衰减主要来自于电池极化损失,而极化损失与循环过程负极SEI膜增厚和晶格缩小导致扩散动力学能力下降有关。本研究对储能锂离子电池体系性能改善提供实验基础和理论支持。  相似文献   

3.
研究了18650型锂离子电池常温循环性能和容量衰减机理。采用恒流-恒压制式对锂离子电池进行200次充放电循环测试,用交流阻抗技术对不同循环次数的电池进行分析,将不同循环次数的电池正负极与锂片分别组成半电池测试其容量,利用扫描电子显微镜法(SEM)、X射线衍射光谱法(XRD)、空气渗透仪等测试手段对不同循环次数后的锂离子电池正负极、隔膜的形貌和结构进行了表征。结果表明,电池在前200次循环过程中容量衰减率为15.6%;而正极和负极容量分别损失6.6%和4.3%。电池容量衰减主要来自于活性锂离子的损失以及电极活性材料的损失,活性锂离子的损失可能是由于在循环过程中电解液与正负极活性材料反应不断消耗活性锂离子造成的;正极活性材料层状结构规整度下降,离子混排度提高,负极活性材料上沉积钝化膜,石墨化程度降低,隔膜孔隙率下降,导致电池电荷传递阻抗增大,脱嵌锂能力下降,从而导致容量的损失。  相似文献   

4.
李孟元 《电池》2018,(2):110-112
研究化成电压对钴酸锂(Li Co O2)正极、石墨负极的锂离子电池性能的影响。从电池容量、倍率、阻抗、存储和循环性能等方面,并从负极固体电解质相界面(SEI)膜形成机理的角度,分析电池性能的差异。化成充电截止电压设定为3.70 V,与3.80 V相比,电池的容量、倍率、阻抗和存储等性能都有所改善。不同化成截止电压生成的SEI膜厚度不同,3.80 V时生成的SEI膜外层疏松,有机锂盐层增厚,因有机层稳定性差导致电芯的存储性能变差。  相似文献   

5.
析锂、电极表面钝化膜的增厚、可循环锂量的损失、活性物质结构的破坏等现象均可导致锂电池寿命的衰减,其中,负极是引起电池容量衰减的主要因素。总结了电池使用过程中负极衰减的主要原理,并提出了几种减少容量衰减的方法。  相似文献   

6.
以LiCr_(0.1)Ni_(0.45)Mn_(1.45)O_4为正极,Li_4Ti_5O_(12)为负极组装成新型LiCr_(0.1)Ni_(0.45)Mn_(1.45)O_4/Li_4Ti_5O_(12)电池体系,采用恒流充电模式进行充放电容量和循环性能等电化学性能测试,并通过交流阻抗和循环伏安测试对其容量衰减机理进行研究,结果表明:对于LiCr_(0.1)Ni_(0.45)Mn_(1.45)O_4/Li_4Ti_5O_(12)电池体系,正极活性物质过量越多,循环性能越好;负极-正极活性物质比例N/P为1.1、0.9、0.7的电池体系,25次循环后容量保持率分别为61.4%、70.4%、97.9%;LiCr_(0.1)Ni_(0.45)Mn_(1.45)O_4/Li_4Ti_5O_(12)电池容量衰减的直接原因是电池正负极表面持续生成的CEI膜和SEI膜造成的活性Li~+消耗和电池倍率能力下降。  相似文献   

7.
吴小兰  王光俊  陈炜  张宏立 《电池》2017,(6):347-350
选用LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2(NCM)和LiMn_(0.8)Fe_(0.2)PO_4(LMFP)复合正极材料,与石墨负极材料制成额定容量为38 Ah的2714891型电池,研究55℃下电池的循环性能,对影响循环性能的电解液和电极进行分析。负极容量衰减是高温循环性能衰减的主要因素,负极石墨比容量测试分析发现其容量损失占负极总损失的85.1%。石墨电化学阻抗谱(EIS)测试结果表明:高温循环后,石墨表面脱嵌锂活性降低,电化学反应难度增大;扫描电子显微镜(SEM)与BET比表面积测试表明:石墨表面结构破坏,体相发生膨胀。石墨本征结构的变化,是负极劣化的主要因素。  相似文献   

8.
锂离子电池碳负极/电解液相容性的研究进展   总被引:1,自引:1,他引:0  
武山  庄全超 《电池》2005,35(3):242-243
综述了锂离子电池碳负极/电解液相容性的研究现状.从碳负极/电解液界面现象、SEI膜的形成机理、溶剂还原机理、锂盐对碳负极性能的影响、碳负极在长期循环过程中的稳定性等论述了碳负极容量衰减的原因,提出了解决方法.  相似文献   

9.
《电池》2020,(3)
以商用LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/石墨电池为对象,研究锂离子电池在高温(45℃)下的失效机理。SEM-能量散射谱(EDS)、XRD、电化学阻抗谱(EIS)、电感耦合等离子体发射光谱(ICP-OES)、拉曼光谱和扣式电池测试结果表明:石墨负极表面的固体电解质相界面(SEI)膜持续生长,消耗大量活性Li~+,是失效的主要原因;正极活性材料颗粒破裂,过渡金属元素镍、钴和锰等的溶解析出,负极材料脱落沉积在隔膜上,堵塞小孔,是失效的次要原因。  相似文献   

10.
郑舒  李保鹏  常艳  蔡洪波 《电池》2021,51(2):173-177
以LiNi0.6Co0.2Mn0.2O2(NCM622)/硅-石墨(Si-C)软包装电池作为研究对象,通过平均电压、dQ/dU曲线、SEM、透射电子显微镜(TEM)、XRD和X射线能谱仪(EDS)等方法,研究软包装电池常温循环失效的原因.NCM622/Si-C软包装电池以1 C在3.0~4.3 V循环300次,容量保持率为79.1%,循环过程中电池整体厚度逐渐增大,全荷电态下循环300次,厚度较循环前增加11.25%,主要由负极膨胀引起.在循环过程中,NCM622正极材料晶体结构保持完整,但有活性物质颗粒出现微裂纹;Si-C负极嵌锂膨胀、脱锂收缩,使硅颗粒破碎,负极材料表面固体电解质相界面(SEI)膜不断修复生长,从而消耗可逆的活性锂,这是电池循环容量衰减的主要原因.  相似文献   

11.
锂离子电池容量衰减机理的研究进展   总被引:1,自引:0,他引:1  
容量衰减是锂离子电池在使用过程中存在的一个重要问题。导致锂离子电池容量衰减的原因主要包括:电池过充电、固体电解质界面膜(SEI)的增长、电解液的分解、活性物质的溶解和相转变等。综述了近年来锂离子电池容量衰减的研究进展,并对锂离子电池的容量衰减机理进行了分析。  相似文献   

12.
通过在磷酸铁锂(LFP)正极浆料里加入基于PEO的固态电解质浆料,使得固态电解质浆料在正极片里均匀分布,减小锂离子传输距离,改善界面阻抗,从而提升固态电池的容量与安全性能。结果表明当LFP/导电炭黑/PVDF质量比为4.5/0.25/0.25时,扣式固态电池容量可达162.1mAh/g,60℃条件下循环50次后仍有96.2%的容量保持率。  相似文献   

13.
孔俊丽 《电源技术》2023,(5):615-617
采用商业化LiNi0.5Co0.2Mn0.3(NCM523)正极与软碳负极组装1 A软包全电池,测试5 C循环性能。全电池在2.5~4.2 V的电压范围内5 C循环3 000次后仍然呈现出84%的容量保持率。将循环250、1 000、3 000次的全电池进行拆解,详细研究了电池衰减过程中材料的变化。X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼光谱显示循环后正负极材料没有明显的结构形貌改变,尤其是3 000次循环后正极表面仍然具有层状结构特征,但是正极的晶体结构有序性下降。结合电化学阻抗谱(EIS)分析可得,负极表面固体电解质界面膜(SEI)的持续生长是电池衰减的主要原因,正极材料结构不断被破坏是电池衰减的次要原因。  相似文献   

14.
研究正极补锂材料Li2NiO2的添加对正极片以及电池电性能的影响。主要从正极片膜片电阻率,电池容量、首效、常温和高温循环以及其他电性能等方面进行测试分析。正极补锂材料的加入显著提升了电池容量及循环性能,同时降低了循环过程中直流内阻(DCR)增长率。当添加量达到6.5%时电池容量提升了8.0%。常温循环400周后容量保持率增长了13.3%,高温循环300周后容量保持率增长了7.2%,但同时补锂剂的加入也增大了正极片的膜片电阻率以及电池的初始DCR值。  相似文献   

15.
以不同温度、不同荷电态对锂离子电池进行储存实验,通过X射线衍射光谱法(XRD)和场发射扫描电子显微镜(FESEM)等手段研究了储存前后电极活性物质结构和表面形貌的变化;并对储存前后的电池进行测试,研究了储存对锂离子电池的容量、循环稳定性和安全性等综合性能的影响.结果发现,经不同荷电态高温储存后,锂离子电池正负极活性物质的体相结构没有发生变化,但其正极材料的微晶尺度和微应力随储存时荷电态的升高而减小;储存后,正极表面出现较明显的钝化膜,负极表面的固体电解质相界面(SEI)膜增厚.经高荷电态储存后,锂离子电池的交流内阻和厚度变大,1 C容量发生衰减,电极充放电极化增大,电池的1 C循环性能下降,安全性能下降;放电态储存后,电池的综合性能无明显变化.说明,放电态储存对于锂离子电池是一种较好的储存条件,有利于储存后电池综合性能的保持.  相似文献   

16.
周江  孟繁慧  朱莎  甄会娟  黄铃 《电源技术》2022,46(2):169-172
研究了LiCoO2正极和氧化亚硅/石墨复合负极(LiCoO2-SiO/石墨)软包锂离子电池体系(LIBs)循环衰减机理,通过循环过程中电化学阻抗(EIS)、增量容量分析(ICA)、正负极形貌等分析了循环的影响因素。结果表明,硅基负极材料在完全嵌锂状态下的体积膨胀不仅会导致SiO负极的颗粒破碎,与电解液的副反应加剧,其膨胀应力还会造成电极的导电网络和粘结剂网络的破损,从而导致正负极活性物质利用率降低,降低SiO负极材料的循环性能。此外,SiO负极的充放电电压平台较高,与石墨材料复合使用时,容易造成电池正极的过充和放电容量损失,正极过充会加剧正极材料结构破裂。而随着循环的进行,过充程度和放电容量损失会愈发严重,加速电池循环性能衰减。  相似文献   

17.
贺兴  林波  缪文泉  韩广帅 《电池》2021,51(2):152-156
选择起火事故大巴车上残存的20只32650型磷酸铁锂动力锂离子电池,用内阻测试仪测试内阻、电压,用充放电设备分析容量,用绝热加速量热(ARC)进行绝热热失控分析,用差示扫描量热(DSC)分析电极和电解液的热稳定性,用SEM研究负极表面和正极截面的形貌与组成,用X射线光电子能谱(XPS)研究负极表面组成和固体电解质相界面(SEI)膜厚度,用气相色谱-质谱(GC-MS)研究电解液有机溶剂组成的变化.20只电池的内阻分布于12.12~18.26 mΩ,一致性很差.内阻最高(18.26 mΩ)的电池防爆阀启动温度比内阻最低(12.12 mΩ)的约低7℃.材料分析发现,一致性差的原因是:极卷最外层负极压实密度过大造成负极中残留大量死锂;电解液存在N-甲基吡咯烷酮杂质,易造成活性物质脱落;正极活性材料中存在Fe-P化合物杂质,使得电池容量不一致;电解液纯度低,出现大量副反应产气.  相似文献   

18.
研究了高温(60℃)与室温(25℃)条件下商品化NCA三元锂离子电池的循环特性,并分析了电化学阻抗谱随循环周数的变化规律,进而通过扫描电镜表征了正负电极表面形貌。结果表明,在高温下电池容量衰减和阻抗增加明显快于室温。扫描电镜表明,不同温度循环之后正极的表面形貌变化的差别并不显著,而石墨负极表面结构在高温下变化明显。以上结果说明,温度是影响电池循环性的重要因素,高温会使负极界面发生较大变化,阻抗增加,最终导致电池容量迅速衰减。  相似文献   

19.
研究二草酸硼酸锂(LiBOB)作为成膜添加剂对钛酸锂(Li4Ti5O12)/LiNi1/4Co1/2Mn1/4O2电池高温性能的影响。通过循环伏安扫描、X射线光电子能谱分析,考察LiBOB在Li4Ti5O12负极上的成膜情况,用电化学交流阻抗谱考察膜的热稳定性。添加剂LiBOB在钛酸锂负极的还原电位为1.75 V(vs.Li/Li+),优先于电解液在负极表面发生电化学反应形成固体电解质相界面(SEI)膜。该膜可降低电池的电荷转移阻抗,有利于提高电池的高温循环和高温储存性能。  相似文献   

20.
杜萍  高俊奎  张绍丽 《电源技术》2007,31(8):609-613
将一种Si/C复合负极材料应用于14500圆柱形电池体系中,对它与碳负极电池的基本性能进行了对比,并对该种Si/C负极材料在实际应用中存在的问题以及失效原因进行了分析.以Si/C为负极的电池,其200次循环后容量维持率仅为69.5%.经分析表明,造成其容量衰减的主要原因为:电极体积膨胀导致电极活性材料脱落,电接触性能变差;由材料体积膨胀导致固体电解质相界面(SEI)膜被破坏而造成的电解液不断的分解,使正、负极界面膜增厚,电阻增加;材料本身结构造成插入的Li无法全部脱出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号