首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
地下水除铁除锰技术与发展趋势   总被引:15,自引:1,他引:14  
阐明了地下水中铁、猛的存在形式及迁移转化规律,对自然氧化法、接触氧化法、生物法三种除铁除锰技术进行比较,论述了生物除铁除锰技术的优势和目前存在的问题:(1)生物除锰的机理还处于较初级的实验室研究阶段;(2)对于大中型除铁除锰滤池,尽管技术上可行。但菌种培养费用巨大;(3)工程实践相对较少,目前尚未构建起完善的工程设计理论及参数确定方法,在此基础上,指明了深入研究工程菌的量产工艺是解决上述问题的根本途径。  相似文献   

2.
生物除锰法能够高效地处理地下水中的Mn2+,通过在实验室进行除锰生物滤层的快速启动试验,研究分析了生物滤层在接种除锰细菌过程中营养物质的投加对滤层成熟的影响.研究发现,在接种除锰细菌后规律地对滤层进行营养的循环浸泡,并控制DO、pH、温度等条件,会比单纯接种细菌的滤层在成熟前期多出21%的去除率,滤层达到成熟所用时间也相应缩短.Fe2+对生物除锰效果有重要作用,在滤料成熟过程中如果进水不含亚铁离子,除锰细菌将无法有效去除二价锰离子,滤料无法成熟.  相似文献   

3.
高铁锰氨氮地下水生物净化滤池的快速启动   总被引:3,自引:2,他引:1  
为了缩短生物除锰工艺处理高铁高锰高氨氮地下水的启动时间,采用变动回流比、固定回流比、不回流3种启动方式,分别启动3根相同的生物除锰滤柱,考察出水回流对启动时间的影响.实验结果表明,采用3种启动方式3根滤柱出水中的总铁、锰、氨氮分别在51、61、82 d降到了0.3、0.05、0.2 mg/L以下,由此证明回流是加速生物除锰工艺快速启动的有效方式.进一步分析发现,铁主要在滤层的0~0.4 m处去除,锰的去除最初是锰砂吸附,当氨氮降到一定程度后,生物除锰效果迅速提高.回流能够有效缩短高铁锰氨氮地下水的启动时间.  相似文献   

4.
目的 研究微生物在锰砂滤层去除地下水中所含的铁、锰过程中所起的作用。为生物法用于地下水除铁除锰的初期启动和生产运行提供依据.方法 试验分为两个阶段,第一阶段。在相同外界条件下,对经过人工接种的滤柱与自然成熟的滤柱进行去除率对比;第二阶段,对成熟滤料进行高温高压灭菌,将灭菌后的滤柱与同期运行的未灭菌滤柱进行去除率试验对比.结果 在运行10dN,两个滤柱的除锰效果出现明显差异,25dN,两个滤柱的除锰效果基本相同.经过灭菌的滤柱重新投入运行,仍然保持原有的除锰能力.结论 滤料的成熟期是一个相对的概念,采用生物接种的手段可以有效地缩短锰砂滤料的成熟期.微生物在除锰过程中起到的是促进作用而非决定性作用,包括物理吸附、化学氧化和催化的非生物因素不容忽视.  相似文献   

5.
高浊高铁锰矿井水回用处理实验研究   总被引:1,自引:0,他引:1  
针对高浊高铁锰矿井水的水质特性,分别采用普通石英砂、普通锰砂以及经过KMnO4溶液改性后的石英砂和锰砂等滤料进行除浊、除铁和除锰的过滤实验研究.结果表明,以上几种滤料具有良好的除浊效果,去除率达99%以上;且均能有效除铁,对铁的去除率在93%以上.经5%KMnO4改性后的锰砂滤料(滤速为6~8m/h)具有较好的去除铁和锰的效果,出水铁和锰浓度都在0.1mg/L以下,能够满足回用水的水质要求,且滤池启动快、除锰效果持续时间长.  相似文献   

6.
氨氮与亚硝酸盐对含铁锰地下水生物净化影响   总被引:1,自引:0,他引:1  
为明确氨氮与亚硝酸盐氮对生物除铁锰性能及锰氧化细菌(MnOB)的影响,采用具有成熟除铁锰能力的中试生物滤柱与SBR反应器进行实验.结果表明:氨氮与亚硝酸盐均不影响滤柱除铁效果;进水亚硝酸盐氮质量浓度为0.1,0.2,0.3和0.7 mg/L时,滤柱除锰效果不受影响,SBR实验结果进一步表明亚硝酸盐能促进MnOB氧化锰能力;氨氮的存在可抑制MnOB氧化锰能力,但对成熟滤柱,进水氨氮质量浓度为1.2,2.2 mg/L时,这种抑制作用不能恶化除锰效果,直至氨氮质量浓度提高至4.5 mg/L时,出水锰质量浓度开始超标.对于生物滤池的启动,可首先接种硝化细菌至硝化过程建立之后,再接种MnOB以减弱氨氮对其的不利影响.  相似文献   

7.
为提高普通曝气生物滤池除磷效果,以水渣为主要原料开发了一种CaCO3型生物滤料,并以陶粒为参比滤料,通过改变水力停留时间考察CaCO3型生物滤料和陶粒两种填料的曝气生物滤池除磷特性.结果表明,与陶粒填料相比,CaCO3型生物滤料曝气生物滤池对磷具有较好的去除效果,在水温为20~25 ℃、COD负荷为3.55~3.62 kg·(m3·d)-1、氨氮负荷为0.76~0.78 kg·(m3·d)-1条件下,CaCO3型生物滤料曝气生物滤池在HRT为5,3和1 h时,磷去除率分别为65.20%~71.07%、40.49%~48.02%和26.10%~33.11%.CaCO3型生物滤料曝气生物滤池对磷的去除主要是通过生物诱导化学沉淀来实现,且磷酸钙盐沉淀对出水浊度几乎没有影响.  相似文献   

8.
采用人工配制的含有As(Ⅲ)30~200μg/L,Fe2+0.5~1.50mg/L,Mn2+0.6~2.0mg/L的原水,通过已经培养成熟的生物除铁除锰滤柱进行过滤实验,分别考察了3、4、5m/h滤速条件下砷的去除效果.结果表明:在原水中砷质量浓度低于200μg/L的情况下,生物除铁除锰滤池的铁锰去除能力基本不受砷的影响,并且砷的去除效果明显,去除率在95%以上.经过滤柱分层取水实验,发现砷的去除集中在0~660mm的滤层厚度.在反冲洗后,短时期内砷和铁有超标的现象.  相似文献   

9.
为研究生物净化低温(5~6℃)高铁锰地下水,采用水厂实地滤柱进行试验.结果表明:通过接种成熟滤料、采用变反冲洗强度和反冲洗上清液回流的方式实现了低温生物除铁锰工艺的快速启动,滤柱达到设计滤速6 m/h,启动时间仅为2个月.滤柱稳定运行的理想运行参数为:滤速4~7 m/h、反冲洗周期24~36 h、反冲洗强度10~12 L/(s·m~2)、反冲洗时间4~5 min.沿程分析发现,铁主要在滤层的0~400 mm处去除,锰主要在400~900 mm去除,除锰带出现先下移再上移的现象,5.0~6.0 m/h滤速的最佳滤层厚度为1 200~1 300 mm.  相似文献   

10.
目的 研究应用生物法去除铁锰氟共存水质中的铁锰.方法 采用静态模拟试验,利用富集大量铁锰细菌的成熟滤料检测铁锰细菌的氧化性能随F-质量浓度及时间的变化情况.结果 在共存F-质量浓度低于10 mg/L时,F-的存在对于铁锰的去除都有不同程度促进作用,以在5 mg/L左右时为最强;高F-质量浓度下,当铁锰细菌承受了适应期的抑制作用进入稳定期后,其氧化铁锰的能力与无氟存在时相当.长期处于含氟水质中的成熟滤料仍具有除氟能力.结论 生物法适于处理含氟的地下水中的铁锰,且成熟滤料具有较弱但持久的除氟能力.  相似文献   

11.
目的掌握不同锰砂滤料对地下水中锰离子的去除速率和去除机理,为选择理想的锰砂滤料提供科学依据.方法选择水厂滤池成熟滤料和4种不同品质的锰砂分别装在5组滤柱中对同一原水进行处理,测定滤柱出水锰离子质量浓度,分析其成熟期、并与反应速率方程进行拟合,综合分析锰砂的去除能力.结果B柱马山高品质天然锰砂成熟期为28d、C柱马山低品质天然锰砂和E柱葫芦岛杨家杖天然锰砂滤料成熟期为66d、D柱河南巩义天然锰砂成熟期为86d.在锰砂滤料形成活性滤膜后,不同锰砂都表现出了一级反应速率方程的特征,B柱马山高品质锰砂的成熟期最短,去除速率高,是除锰理想的锰砂滤料.结论锰砂品质对生成活性滤膜和成熟期影响很大,锰砂生成活性滤膜后的质量浓度随时间变化曲线符合一级反应速率方程.  相似文献   

12.
生物滤层中锰去除反应动力学研究   总被引:3,自引:0,他引:3  
以莫诺方程式为基础,通过对滤层内锰去除反应动力学进行分析,认为生物滤层内锰去除反应速率模型在不同运行阶段和不同滤层深度分别存在高、中、低底物浓度的反应模型,对于高、低底物浓度反应模型可用莫诺方程式的推论形式表示.对上述模型进行的验证结果表明在运行时间较短的情况下,滤层内锰去除反应动力学模型表现为高底物浓度反应模型,随着运行时间的增加演变为:沿滤层深度的增加依次存在典型的高、中、低底物浓度反应模型.试验条件下回归方程相关系数均在0.99以上.  相似文献   

13.
在生物固Mn2+除Mn2+理论的指导下,通过滤柱装置试验,探求生物滤层中Fe2+、Mn2+的氧化动态.得出Mn2+的氧化虽然迟后于Fe2+的氧化,但Fe2+、Mn2+的氧化带并无明显界限.Fe2+虽然在无菌滤层中就可以完全氧化,但在生物滤层中Fe2+参与了除Mn2+菌的代谢,在维系生物滤层的稳定上是不可缺少的. Fe2+、Mn2+可以在同一滤层中得以去除.由此开发了一级过滤除Fe2+除Mn2+的简缩工艺流程和一系列配套的工艺技术,并应用于大型除Fe2+除Mn2+水厂的设计与运行.投产2a来,出水ρ(Mn2+)小于0.05mg/L,总铁为痕量,均优于国家饮用水标准,达到了预期目的.  相似文献   

14.
研究了以河砂和锰砂为填料时,接触氧化滤柱对铁锰的去除效果以及反冲洗对去除效果的影响. 结果表明,在滤速为8.3m/h、进水pH值为6.8、溶解氧为1.7mg/L的条件下,河砂填料和锰砂填料滤柱对铁的去除效果分别需要9d和2d即可稳定,出水铁浓度均在0.3mg/L以下;河砂填料和锰砂填料滤柱对锰的去除效果分别需要48d和16d方可稳定,出水锰浓度均在0.1mg/L以下. 反冲洗之后,河砂滤柱对铁和锰的去除能力需要40min和80min才能完全恢复;锰砂滤柱对铁、锰的去除能力需要20min和40min才能完全恢复. 扫描电境对滤膜形态分析表明,成熟的除铁锰滤膜表面呈絮状,反冲洗之后滤料表面仍然附着有絮状滤膜,该絮状滤膜是反冲洗后除铁锰效果能够快速恢复的基础. 实际工程中可以采取价格便宜的河砂取代锰砂,由此可以节省填料投资的90%.  相似文献   

15.
研究了以河砂和锰砂为填料时,接触氧化滤柱对铁锰的去除效果以及反冲洗对去除效果的影响.结果表明,在滤速为8、3m/h、进水pH值为6.8、溶解氧为1.7mg/L的条件下,河砂填料和锰砂填料滤柱对铁的去除效果分别需要9d和2d即可稳定,出水铁浓度均在0.3mg/L以下;河砂填料和锰砂填料滤柱对锰的去除效果分别需要48d和16d方可稳定,出水锰浓度均在0.1mg/L以下.反冲洗之后,河砂滤柱对铁和锰的去除能力需要40min和80min才能完全恢复:锰砂滤柱对铁、锰的去除能力需要20min和40min才能完全恢复.扫描电境对滤膜形态分析表明,成熟的除铁锰滤膜表面呈絮状,反冲洗之后滤料表面仍然附着有絮状滤膜,该絮状滤膜是反冲洗后除铁锰效果能够快速恢复的基础.实际工程中可以采取价格便宜的河砂取代锰砂,由此可以节省填料投资的90%.  相似文献   

16.
针对常用滤料对锰的去除率不高和成熟期长的问题,研究开发了一种改性锰砂滤料,测定了改性滤料的比表面积和Zeta电位,并使用该滤料进行了高浊高铁锰矿井水净化实验.结果表明:该滤料具有稳定的处理效果,在24 h连续处理的条件下,污染物去除率保持在95%以上.滤料改性后,其比表面积为8.849 m~2/g,与未改性前相比明显增大,可以大量地吸附水中铁锰离子;被吸附的离子,通过改性形成的滤膜(Mn_xFeO·xH_2O)催化氧化成为三价铁和二氧化锰而被去除;改性滤料表面Zeta电位为-14.5 mV,其静电排斥作用比石英砂和锰砂弱得多,对悬浮颗粒向滤料表面靠近的阻碍相对较小,使悬浮颗粒易于去除.  相似文献   

17.
针对太湖流域某地水厂常规过滤介质对微污染水源水中典型污染物去除效果不甚理想的情况,开展了碱式聚合氯化铝(PAC)改性滤料强化过滤试验研究.研究结果表明:PAC改性石英砂滤料对浊度、CODMn、UV254的去除效果明显优于未经改性的普通石英砂滤料,去除率分别提高To.3%、12.4%、13.8%:同时,能强化对稳定性铁锰的过滤效果,在进水铁浓度为1.21mg/L时,改性滤料对铁的去除率比普通石英砂滤料高9.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号