首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
固定化基因重组酵母发酵木糖产乙醇   总被引:2,自引:0,他引:2  
采用海藻酸钙凝胶包埋法固定基因重组酵母Sacchromyces cerevisiae ZU-10,研究了固定化细胞的发酵特性.结果表明,在30 ℃、pH 5.5下发酵80 g/L木糖,游离细胞的发酵周期为96 h,乙醇得率为0.37,细胞固定化后发酵周期缩短至60 h,乙醇得率提高到0.40.利用固定化细胞重复分批发酵8次,木糖利用率均在95%以上,平均乙醇得率为0.39.与游离细胞相比,固定化细胞对乙酸的耐受性明显增强,当质量浓度低于1.2 g/L时乙酸对木糖发酵的影响很小.利用固定化重组酵母发酵玉米秸秆水解液中的葡萄糖和木糖,36 h内65.0 g/L葡萄糖和27.0 g/L木糖被完全利用,生成36.9 g/L乙醇,对葡萄糖和木糖的乙醇得率为0.40.  相似文献   

2.
共固定化细胞发酵纤维素水解液产乳酸的研究   总被引:1,自引:0,他引:1  
针对在纤维素酶法水解过程中,由于纤维素酶系中纤维二糖酶的不足造成纤维二糖的累积,而酶解产物纤维二糖和葡萄糖的累积又会对纤维素酶的催化反应产生明显的反馈抑制作用等问题,将富含纤维二糖酶的黑曲霉(Aspergillus nigerZU-07)孢子和德氏乳酸杆菌(Lactobacillus delbrium)一起包埋固定在海藻酸钙凝胶珠中,利用共固定化细胞转化纤维素水解液生产乳酸.研究结果表明,共固定化细胞中的纤维二糖酶可以将纤维素水解液中存在的纤维二糖迅速水解成葡萄糖,而固定化乳酸杆菌又能将葡萄糖迅速转化成乳酸.共固定化细胞的最适作用温度为48℃,在纤维素水解液(总还原糖质量浓度为49.40 g/L)中协同反应48 h,生成的乳酸质量浓度为41.71g/L.在反复分批协同反应工艺中,共固定化细胞性能稳定,可重复利用12批以上.  相似文献   

3.
针对在纤维素酶法水解过程中,由于纤维素酶系中纤维二糖酶的不足造成纤维二糖的累积,而酶解产物纤维二糖和葡萄糖的累积又会对纤维素酶的催化反应产生明显的反馈抑制作用等问题,将富含纤维二糖酶的黑曲霉(Aspergillus niger ZU-07)孢子和德氏乳酸杆菌(Lactobacillus delbrium)一起包埋固定在海藻酸钙凝胶珠中,利用共固定化细胞转化纤维素水解液生产乳酸.研究结果表明,共固定化细胞中的纤维二糖酶可以将纤维素水解液中存在的纤维二糖迅速水解成葡萄糖,而固定化乳酸杆菌又能将葡萄糖迅速转化成乳酸.共固定化细胞的最适作用温度为48 ℃,在纤维素水解液(总还原糖质量浓度为49.40 g/L)中协同反应48 h,生成的乳酸质量浓度为41.71 g/L.在反复分批协同反应工艺中,共固定化细胞性能稳定,可重复利用12批以上.  相似文献   

4.
以沸石为填料、气液逆流形式的固定化细胞装置填料塔,操作条件控制为空气量0.5 m3/h、循环液体流量1.0 L/h,在培养基的初始pH =2.0、Fe2+初始浓度为8g/L左右的条件下,氧化亚铁硫杆茵固定化细胞只需10h就达95%以上Fe2+的氧化率,其Fe2+平均氧化速率高达0.88 g/(L.h),固定化细胞Fe2+平均氧化速率是游离细胞的11倍.固定化细胞经长期低pH值驯化后,仍能保持较高的Fe2+氧化活性,在初始pH=1.6的条件下,只需14h Fe2+氧化率就达95.18%,Fe2+平均氧化速率达0.63 g/(L.h);是驯化前Fe2+平均氧化速率的1.58倍.  相似文献   

5.
选择活性炭、硅胶G、大孔树脂DM-130为载体,采用吸附培养的方法将发酵性丝孢酵母细胞固定化,确定了固定化的适宜条件。通过比较适宜条件下固定化细胞的脂肪酶活力,筛选出固定化效果较好的吸附载体为活性炭。结果表明,在培养基中添加10g/L 40目活性炭,接入体积分数为10%的液体种子,于30℃、160r/min吸附培养48h的固定化效果较好,获得的固定化酶活力可达110.32U/g。  相似文献   

6.
一株高产乳酸细菌的分离鉴定与发酵性能研究   总被引:1,自引:0,他引:1  
从食物垃圾中分离到1株乳酸高产菌株TD175,该菌株在含100 g/L葡萄糖的发酵培养基中,经72 h发酵,可产生78.56 g/L的乳酸.根据形态和生理生化特征,将菌株TD175初步鉴定为乳杆菌属(Lactobacillussp.)的细菌,其16S rDNA序列与乳杆菌MR2菌株、植物乳杆菌(L.plan tarum)和戊糖乳杆菌(L.pen tosus)的相似性最高,均达到99%.菌株TD175经过耐酸选育得到的新菌株TD175-1的乳酸产量提高了10.7%.菌株TD175-1能促进食物垃圾的乳酸发酵,厌氧发酵48 h,产生29.65 g/L的乳酸,比不接种的自然发酵高34.3%.  相似文献   

7.
本文研究了卡拉胶固定化产氨短杆菌细胞由延胡索酸转化生成 L-苹果酸.固定化细胞经胆酸处理,延胡索酸酶活力比未处理前提高10倍,机械强度增大.比较了固定化细胞和游离细胞延胡索酸酶的性质:两者的最适温度为60℃;最适 pH 为7.0;固定化细胞反应的活化能为675J/mol;其表现米氏常数是游离细胞的4.5倍;固定化细胞比游离细胞更稳定.间歇反应20批,L-苹果酸转化率为88%.用柱式反应器连续转化,控制底物流速12mL/h,37℃稳定工作30天,L-苹果酸转化率为85%.  相似文献   

8.
假单胞菌H3壳聚糖酶的固定化研究   总被引:4,自引:0,他引:4  
分别采用纳米CaCO3吸附法、聚丙烯酰胺(PAG)包埋交联法和DEAE-22纤维素交联法固定化假单胞菌H3壳聚糖酶,结果表明:以DEAE-22纤维素为载体、戊二醛为交联剂的固定化方法较优,酶活保留率达91.4%;此外,还确定了DEAE-22纤维素交联法的固定化条件为:DEAE-22纤维素载体0.5 g,3.5%戊二醛交联剂20 mL,给酶量为15 mg,固定化温度为4℃,固定化时间为12h;壳聚糖酶在经固定化后,最适温度为50℃,最适pH为4.5,并表现出比游离酶更高的热稳定性,固定化酶的米氏常数Km值为14.29 g/L;将该固定化酶重复使用12次,固定化酶的活力降低到75%,具有较好的操作稳定性.  相似文献   

9.
研究了在有机溶剂体系下利用脂肪酶催化乳酸铵与乙醇合成乳酸乙酯的反应条件,对脂肪酶和有机溶剂进行了筛选,考察了影响合成乳酸乙酯的因素(底物物质的量配比、反应时间、乳酸铵浓度、温度、酶浓和摇床转速).结果表明,以叔丁醇为反应介质、脂肪酶Novozym435为催化剂时乳酸乙酯产率最高.在底物物质的量比为1∶24,反应时间24 h,乳酸铵浓度0.2 mol/L,反应温度60℃,酶浓40 g/mol,摇床转速150 r/min时乳酸乙酯产率可达32.38%,酶重复使用5次后乳酸乙酯得率仍可达到22.1%,反映出该酶具有良好的稳定性.  相似文献   

10.
海藻酸钠、卡拉胶联合固定化α-淀粉酶特性研究   总被引:1,自引:0,他引:1  
以海藻酸钠、卡拉胶共混包埋制备固定化α-淀粉酶,并对α-淀粉酶固定化条件和固定化酶性能进行了探讨。研究表明:在海藻酸钠浓度3.0%、卡拉胶浓度1.0%、酶浓度18g/L、氯化钙浓度0.8%条件下,可以获得最佳的固定化效果,固定化酶活力为139.66U/g.min,活力回收率为55.70%;与游离酶相比,制备固定化酶的最适酶促反应pH值由7.0降至6.0,最适酶促反应温度由60℃升至70℃,其作用温度范围、pH值范围均比游离酶范围宽;固定化酶在连续操作5次后仍显示出良好的活性,固定化酶的耐热性也显著提高。  相似文献   

11.
以制糖工业的副产品糖蜜为原料,通过酸水解法制备乙酰丙酸(LA),再用富含LA的糖蜜水解液发酵生产生物可降解塑料聚羟基丁酸酯(PHB)。本文采用单因素和响应面方法对糖蜜酸水解条件进行优化,得到最优反应条件为液固比1.24 mL/g、反应温度146 ℃、反应时间1 h。该反应条件下LA的最高产率达到44.09%,大大优于未优化时LA的产率(17.39%),也优于已报道的响应面法优化硫酸催化甘蔗糖蜜制备LA的产率(30.11%)。随后利用该水解液培养杀虫贪铜菌(Cupriavidus necator),48 h后生物量达到2.99 g/L,菌体中PHB含量达到细胞干重的14.85%。结果表明:通过优化水解反应条件能够明显提高糖蜜酸水解制备LA的产率;富含LA的糖蜜酸水解液直接用于PHB的生产具备可行性。  相似文献   

12.
以缬沙坦苄酯为原料,经水解反应合成了缬沙坦,对其结构进行了IR确证。考察了碱液浓度、反应温度、原料配比等因素对反应的影响,采用正交试验法对缬沙坦合成工艺进行了优化。结果表明,以乙醇为溶剂,碱浓度2.0mol/L,n(缬沙坦苄酯)∶n(氢氧化钠)=1∶8,反应温度40℃时,缬沙坦收率达71.5%,产品的化学纯度达99.90%,光学纯度达99.85%。  相似文献   

13.
选择固定化南极假丝酵母脂肪酶B(Candida Antaractic Lipase B)为催化剂(自制)催化合成乳酸乙酯.利用Plackett-Burman及响应曲面(RSM)法优化反应条件,考察摇床转速、反应温度、底物物质的量之比、底物总质量及反应时间对乳酸乙酯产率的影响.Plackett-Burman实验表明:摇床转速、底物总质量以及反应时间是主要影响因素.对该三因素进行五水平的中心组合设计实验,结果表明,在摇床转速为150 r/min,反应温度为50℃,乳酸与无水乙醇的物质的量之比为1∶8,底物总质量为1.24 g,反应时间为24 h时,乳酸乙酯的产率为38.15%.  相似文献   

14.
固定化纤维二糖酶在纤维原料水解中的应用   总被引:5,自引:1,他引:5  
纤维原料(木糖渣)经里氏木霉(Trichoderma reesei)纤维素酶水解后,水解液中含有大量的纤维二糖,利用固定化纤维二糖酶将其迅速转化成葡萄糖.在重复分批酶解条件下,纤维素水解液中的葡萄糖质量浓度由起始的26.3 g/L提高到46.7 g/L;在连续酶解工艺中,当稀释率为0.3 h-1时,酶柱出口处的纤维二糖质量浓度降为零.将T.reesei纤维素酶和固定化纤维二糖酶的水解反应有机耦连,协同降解纤维原料,从而有效解除酶解过程中因纤维二糖累积所形成的反馈抑制作用,酶解得率达88.2%,比单独采用T.reesei纤维素酶提高了31%.进一步采用分批添料协同酶解工艺,将纤维底物的最终质量浓度增加到200 g/L,水解液中还原糖质量浓度上升至128.5 g/L,酶的利用率得到了明显提高.  相似文献   

15.
以光学活性(S)-乳酸为原料、硫酸催化下分别与甲醇、乙醇反应,生成相应(S)-乳酸甲酯及乙酯,并与对甲苯磺酞氯反应,生成0-对甲苯磺酰-(S)-乳酸甲酯及乙酯,再与异丁基苯进行Friedel-Crafts烷基化反应,得2-(4-异丁基苯基)丙酸酯,水解后即为(S)-布洛芬。这一合成方法反应步骤少、光学收率高,被认为是制备(S)-布洛芬十分有效的方法。本文是这一研究的第一部分,主要考察了酯化反应条件对合成(S)-乳酸甲酯及乙酯的影响并确定了最佳反应条件,其中合成的(S)-乳酸甲酯的收率达67.4%,光学纯度90%,合成(S)-乳酸甲酯及乙酯的收率85%-92%。  相似文献   

16.
“一锅法”合成β-苯甲酰基丙烯酸乙酯   总被引:2,自引:0,他引:2  
以乙醛酸和苯乙酮为原料,采用"一锅法"合成β-苯甲酰基丙烯酸乙酯,较佳反应条件是n(苯乙酮)∶n(乙醛酸)∶n(乙醇)∶n(硫酸)=1.00∶1.25∶5.07∶0.02,酯化反应温度85℃、时间3 h,消除反应温度115~120℃、反应时间9 h。按苯乙酮计,β-苯甲酰基丙烯酸乙酯的收率77.74%,质量分数91.07%。  相似文献   

17.
四氮唑乙酸的合成   总被引:2,自引:0,他引:2  
以甘氨酸、叠氮化钠及原甲酸三乙酯等为主要原料 ,合成了四氮唑乙酸 ,对其合成工艺条件进行了研究。得到较佳的工艺条件为 ,n(甘氨酸 )∶ n(叠氮化钠 )∶ n(原甲酸三乙酯 ) =1 .2 5∶ 1 .2∶ 1 ,反应温度 60℃ ,反应时间 2 .5 h。在上述条件下 ,产品收率达64% ,纯度达 98%以上。通过 FT- IR及1H- NMR确定了其结构。  相似文献   

18.
通过对麦秸秆在相对较低的温度下稀酸水解实验研究,探讨了原料与稀硫酸的固液比,反应时间、稀硫酸浓度和温度对纤维素、半纤维素降解为还原糖含量的影响,确定麦秸秆最佳水解条件是:固液比为1:8、0.6%稀硫酸在160℃下反应1h,得到还原糖浓度50.34g/L、得率为61.96%。  相似文献   

19.
以β-苯甲酰基丙烯酸为原料,经酯化反应、消除反应合成了β-苯甲酰基丙烯酸乙酯。研究表明,在硫酸存在下通过抽真空消除可以有效地将酯化过程中产生的副产物转化为目标产物;酯化反应的较佳条件:n(β-苯甲酰基丙烯酸)∶n(乙醇)∶n(硫酸)=1∶14∶0.28,回流反应时间3 h;消除反应较佳条件:反应压力2.66 kPa,反应时间5 h,反应温度40℃。按β-苯甲酰基丙烯酸计,β-苯甲酰基丙烯酸乙酯收率为81.7%,质量分数为97.0%。  相似文献   

20.
以AlCl3为催化剂由乳酸铵合成乳酸乙酯的研究   总被引:2,自引:0,他引:2  
研究了以AlCl3为催化剂由乳酸铵合成乳酸乙酯的反应,对催化剂用量、反应时间、醇铵比、带水剂种类及带水剂用量等参数对反应的影响进行了探讨。得到适宜的反应条件:催化剂用量为乳酸铵质量的1.5%,醇铵物质的量之比为2.5:1,反应温度不高于85℃,反应时间为48h,带水剂为苯,苯的用量为乳酸铵质量的67%,产率达到22.45%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号