首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
通过ANSYS软件建立了简支箱梁桥足尺模型,桥面铺装层间采用接触方式,分析了简支箱梁桥在中部偏载作用下沥青混凝土铺装上下面层厚度、弹性模量、层间粘聚力以及层间脱空面积变化对铺装层产生的影响.计算分析结果表明:沥青铺装层上下层厚度变化对铺装层内纵横向拉应力影响明显,增加铺装上层厚度可以减少铺装下层的拉应力和剪应力,增加铺装下层厚度对层间抗剪作用影响不敏感;增加铺装上层弹性模量能减小铺装下层拉应力和剪应力,增加铺装下层弹性模量不能提高铺装层抗剪效果;层间粘聚力大于0.25 MPa时,铺装上下层各应力基本不变;随着铺装层间脱空面积的增大,铺装层上下层相关应力增大,在脱空处容易产生破坏.沥青铺装层层间存在脱空时,铺装层上层纵横向拉应力和剪应力大于铺装层下层的对应应力.  相似文献   

2.
以某大跨悬索桥钢箱梁为研究对象,建立精细化的局部正交异性钢桥面系有限元模型.采用正交试验设计方法,研究了最不利轮载作用下正交异性板结构参数及铺装层材料与结构参数对铺装层力学特性的影响.以钢桥面铺装体系质量最轻和铺装层横向拉应力最小为目标函数,拟合得到各变量间响应面模型,最后对正交异性钢桥面系进行优化设计.结果表明:轮载对称施加在U肋正上方时,铺装层内横向拉应力及弯沉值最大;最不利轮载作用下,铺装层弹性模量变化对铺装层横向拉应力、铺装层与钢桥面板间层间剪应力、铺装层弯沉值影响最为显著,增大铺装层厚度及弹性模量可改善钢桥面系受力状况,钢桥面板厚度变化对钢桥面系力学特性影响较小;基于响应面对正交异性钢桥面系进行多目标优化设计,减小了铺装层横向拉应力的同时,降低了结构自重,具有很好的应用价值.  相似文献   

3.
公路桥梁伸缩装置受车辆荷载的长期冲击和环境因素变化极易发生疲劳破坏,锚固区混凝土和桥面铺装之间的界面脱黏尤为普遍。为防治"界面脱黏"病害,建立了桥梁伸缩装置锚固区的ANSYS有限元模型,通过计算6个不同位置公路-I级车辆荷载作用下桥面铺装与锚固区混凝土之间黏结界面拉应力和剪应力,分析了桥面铺装弹性模量、轮胎接触压力、水平力等因素对界面拉应力和剪应力的影响。结果表明,随着桥面铺装弹性模量的增大,黏结界面的应力逐渐减小,且黏结界面拉应力、剪应力与荷载压力值、水平力系数均呈现为正相关,其中水平力系数对界面拉应力的影响最明显,其次是车轮荷载大小。因此,选择弹性模量较大的桥面铺装材料、减小车辆超重情况及防止车辆在锚固区处紧急启动或刹车等均能延长伸缩装置的使用寿命。  相似文献   

4.
新型钢桥面铺装结构的力学性能分析   总被引:2,自引:0,他引:2  
针对目前正交异性钢桥面铺装层常见的裂缝、推移、局部拥包等破坏形式,应用有限元法对新型桥面铺装结构,分析不同位置的荷载对铺装层最大拉应力和表面最大竖向位移、最大剪应力的影响,并与传统的沥青混凝土铺装结构进行对比分析。分析结果表明:采用新型的铺装结构比沥青混凝土铺装结构的最大拉应力、表面最大竖向位移、铺装层表面和底面的最大剪应力都有一定程度的降低,因此能较好的控制钢桥面铺装层的破坏。在采用新型桥面铺装结构时应以铺装层横向最大拉应力、最大横向剪应力作为铺装层开裂破坏控制指标。研究结果可以为大跨径钢箱梁桥面铺装设计提供理论参考.  相似文献   

5.
为了分析桥面铺装层的力学特性及其影响因素,结合桥面铺装的结构形式建立了有限元模型,分析了不同水平制动力系数、铺装上下面层材料模量组合及铺装层厚度变化对铺装层内力学状态的影响规律.结果表明,不同的水平载荷对铺装层内的主应力影响较小,而对铺装层内的剪应力影响较大;随着水平载荷的增加,铺装层及防水粘接层内的最大剪应力呈线性增大的趋势;随着铺装层组合模量的提高,铺装层内的主应力变化较小,而层间剪应力相应减小,但变化的幅度较小;增加铺装层的厚度对主应力的影响很小,随着厚度的增加层间最大剪应力减小.研究结果可为桥面铺装材料的选择和结构设计提供理论参考.  相似文献   

6.
在旧水泥混凝土路面上加铺沥青面层时,层间接触面是路面结构抵抗水平剪切应力的最薄弱环节.利用路面设计软件BISAR,在分析了影响沥青面层和水泥混凝土基层层间剪应力因素的基础上,采用正交试验方法对各影响因素的敏感性进行比较.分析表明,车辆轴载对层层间剪应力的影响最大,随着轴载的增加,层间剪应力逐渐增大,二者呈现线性关系;沥...  相似文献   

7.
根据大跨径混合梁斜拉桥九江长江公路大桥箱梁结构特征,采用通用有限元软件Abaqus分别建立了钢箱梁与钢混结合段的铺装结构有限元模型,对比分析了胎压为0.7 MPa和1.0 MPa作用下两种节段铺装结构层的力学响应分布规律。计算结果表明:钢箱梁铺装层的最大横向拉应力要大于最大纵向拉应力,最大层间剪应力出现在横隔板上方加劲肋两侧区域。钢混结合段铺装层的最大横向拉应力、层间剪应力以及最大竖向位移均发生在钢混结合段与钢箱梁段的接合面处。钢箱梁铺装层的主要力学控制指标值均明显大于钢混结合段铺装。研究结果可为钢箱梁桥与钢混梁桥的铺装设计提供力学计算依据。  相似文献   

8.
结合郑州市陇海路主线高架桥工程,针对波形钢腹板PC组合箱梁桥面沥青铺装结构,利用ANSYS软件建立三维有限元计算模型,对铺装层厚度、铺装层弹性模量、车辆荷载、汽车冲击力等影响桥面铺装受力的因素进行敏感性分析,同时分析温度效应对铺装结构的影响。研究结果表明:车辆荷载对铺装层受力影响显著,且各应力与轴载大小基本成线性关系; 铺装层厚度与弹性模量对铺装层受力有一定影响; 汽车冲击力对铺装层受力影响较大; 温度变化会使铺装结构产生较大的温度应力。  相似文献   

9.
带裂缝桥面铺装内部动水行为仿真模拟   总被引:1,自引:1,他引:0  
为了解带裂缝桥面铺装在内部动水压力作用下的力学响应情况,采用LS-DYNA有限元分析软件,建立沥青铺装层内部饱水裂缝模型,施加车辆正弦动态荷载,对内部动水行为进行流固耦合仿真模拟分析.结果表明:车辆动载作用下,饱水微裂缝所受最大压、剪应力均位于裂缝尖端,而最大拉应力则位于裂缝周围;饱水裂缝尖端最大压、剪应力与车速和荷载水平都有很好的线性相关性,在120 km/h速度、1.5 MPa荷载水平下,X、Y向最大压应力和最大剪应力分别达到0.472、1.101、0.361 MPa,在如此大应力反复作用下微裂缝将迅速扩展,加速铺装结构破坏.导致沥青铺装层内饱水微裂缝扩展、恶化的最主要因素是车辆的超载,交通管理部门应严格限制超载超限车辆的上路.  相似文献   

10.
为探究车辆超载与层间接触光滑状态耦合作用下,沥青路面结构力学特性的变化规律,选取典型的半刚性基层路面结构,借助BISAR3.0软件中提供的剪切弹性柔量接触模型,分析不同轴载作用下沥青路面基-面层层间接触处于极端状态时的弯沉值、拉应力、剪应力及路面疲劳寿命变化量,并进一步探讨二者对力学特性的影响程度.结果表明:在车辆超载及基-面层间接触光滑状态耦合作用下,沥青路面结构内评价指标变化显著,且明显大于单一因素对性能的影响;下面层结构内拉应力及剪应力受层间接触条件及车辆轴载的影响较大.在选定的分析条件中,最不利状况与标准状态相比,弯沉值增幅159.5%;沥青层结构内剪应力涨幅为74.6%;半刚性材料结构层内拉应力值涨幅180.7%;车辆超载及层间接触条件恶化,致使路面产生病害的几率增大,使用寿命严重缩短.  相似文献   

11.
为研究多轴车辆移动载荷对半刚性路面性能影响规律,针对半刚性路面的特点,依据弹性层状体系理论,将半刚性路面的沥青层、半刚性基层、半刚性底基层及土基层按线弹性考虑,建立了半刚性路面的三维有限元分析模型,分析了车辆三轴移动载荷对半刚性路面性能影响。结果表明,3轴载荷作用下路面应力变化与车辆轴数有关,当车桥依次驶过路面时,路面应力出现3次突变,沥青层三向压应力、半刚性基层和底基层的垂直压应力、横向拉应力和水平拉应力均增大,最大拉应力出现在半刚性基层和底基层结合处;前轴驶过时轮迹带中心区域各层的横向剪应力最大,后轴驶过时轮迹带边缘区域各层的横向剪应力最大,最大值出现在沥青层底部;中轴驶过时路面各层的水平剪应力最大,最大值也出现在沥青层底部。因此,设计路面结构时,半刚性基层和半刚性底基层应选取抗弯和抗拉强度较高的材料,并应加强沥青面层的抗剪强度。  相似文献   

12.
为了满足对自重敏感的大跨桥梁钢桥面的翻修与加固需求,提出采用超短栓钉作为连接件的钢-超薄UHPC轻型组合桥面结构(简称“新超薄体系”). 通过钢-超薄UHPC组合板负弯矩试验,研究关键设计参数对超薄UHPC层抗裂性能的影响. 试验结果表明:当UHPC最大裂缝宽度小于0.15 mm时,裂缝宽度的增长近似呈线性,在钢筋屈服以后,裂缝宽度迅速增大;配筋率和钢筋直径对名义开裂应力的影响较大. 基于试验结果,分析已有的裂缝宽度计算公式,确定钢-超薄UHPC组合板裂缝宽度的建议计算公式. 以某特大跨径悬索桥为工程背景,进行整体和局部有限元分析,论证了方案应用于实际工程的可行性. 计算结果表明:钢-超薄UHPC组合桥面的自重与常规60 mm厚的钢桥面铺装基本持平,主缆和吊索内力变化小于3.0%;钢桥面(OSD)各典型疲劳细节的应力幅值降低了10.1%~52.0%,且均小于200万次疲劳强度;UHPC层中最大拉应力为8.4 MPa,远小于试验得到的名义开裂应力.  相似文献   

13.
为探讨梁轨非线性互制作用下连续梁桥上双块式无砟轨道系统静动力荷载下结构响应,预测桥上无砟轨道结构的疲劳寿命,基于梁轨相互作用原理与车辆-轨道-桥梁耦合动力学原理,以昌景黄铁路某(40+64+40)m连续梁为研究对象,采用有限元方法建立了考虑桥梁、支座、底座板、道床板、扣件和钢轨等构件及结构层间非线性约束的连续梁-CRTS双块式无砟轨道的一体化空间分析模型,研究列车静活载作用下桥梁、道床板、底座板及钢轨的动力响应特性与无缝线路纵向力分布规律,分析连续梁桥上无砟轨道结构疲劳特性。结果表明:温度荷载作用下钢轨最大压应力位于连续梁两端,最大拉应力位于桥梁跨中;竖向荷载作用下钢轨最大拉应力位于连续梁桥墩,最大压应力位于桥梁跨中;制动荷载作用下钢轨拉、压应力极值均位于桥梁桥墩;钢轨纵向力由温度荷载控制,最大应力为143.1 MPa,满足规范要求;列车动载作用下,简支梁和连续梁上钢轨最大拉、压应力相当,道床板最大拉应力出现在连续梁跨中限位凹槽附近,其板底拉应力大于板顶,底座板最大拉应力出现在连续梁主墩附近,且板顶和板底的拉、压应力基本相同;列车动载作用下,钢轨最易破坏处寿命约27.1 a,道床板和底...  相似文献   

14.
超高性能混凝土(UHPC)因具有高强度、高耐久性而被广泛地应用到桥梁工程中,在UHPC预制节段梁中,剪力键的剪切特性因缺少相应的规范而成为大家共同关注的问题。因此,通过有限元软件ABAQUS模拟了UHPC的直剪性能,主要研究参数包括剪切面面积、侧向应力以及接缝类型,分析比较了不同工况下构件的破坏模式以及荷载位移曲线,得出了各参数对UHPC构件之间性能的影响规律。分析表明:随着剪力键剪切面面积的增加,构件的抗剪承载力明显提升;在侧向应力较小时(不高于0.3fc),随着侧向应力的增加,构件的破坏荷载近似线性增加;胶接缝构件因具有良好的整体性能而使抗剪承载力比同条件下干接缝构件的抗剪承载力高16%。此外,日本JSCE规范计算值与数值模拟试验结果吻合良好,表明日本JSCE规范剪力键的设计公式可用于预测UHPC节段接缝抗剪承载能力。  相似文献   

15.
为了研究钢-超高性能混凝土(UHPC)轻型组合桥面结构的横向抗弯开裂性能,综合考虑配筋率、保护层厚度、UHPC层厚度和栓钉间距4个影响因素,对40个钢-UHPC组合板试件进行受弯开裂正交试验. 结果表明,未配筋构件裂缝数量少且裂缝扩展较快,配筋可以提高构件的开裂刚度,加强裂缝扩展阶段,使构件出现多元开裂特性. 配筋率对开裂应力的影响最大,其次是保护层厚度,然后是栓钉间距,UHPC厚度对开裂应力的影响较小. 在配筋率较高时减小保护层厚度,开裂应力提高幅度较大. UHPC厚度为45 mm的组合板的开裂应力为18.7~27.8 MPa,UHPC厚度为60 mm的组合板的开裂应力为17.2~27.4 MPa,远超虎门大桥的工程需求. 根据现有规范公式计算钢-UHPC组合结构开裂荷载偏保守. 根据密集配筋钢-UHPC组合结构特点,提出钢筋应力和开裂荷载计算方法,计算结果和试验实测结果较吻合.  相似文献   

16.
超高性能混凝土(UHPC)是具有超高强度、高韧性、高耐久性的新型水泥基复合材料,UHPC与钢绞线的黏结性能也与普通混凝土存在差异,且缺乏关于超高性能混凝土与钢绞线黏结性能的设计标准。因此,通过对36个常温自然养护的UHPC与钢绞线中心拉拔试验进行研究,研究参数为黏结长度和保护层厚度,根据试验获取了其荷载滑移曲线、破坏形态、黏结强度。分析试验数据表明:UHPC与钢绞线的极限黏结应力为7.01~11.65 MPa,均值为8.78 MPa,明显优于普通混凝土的。当直径为15.2 mm钢绞线的保护层厚度大于30 mm后,保护层厚度对黏结强度的影响较小。相对于普通混凝土,UHPC中1×7钢绞线的传递长度和锚固长度均可减少50%,建议对于抗压强度大于150 MPa的UHPC,钢绞线传递长度取25d,锚固长度取35d。  相似文献   

17.
UHPC永久性模板与普通混凝土的界面黏结性能是两者协同作用的关键,研究不同键槽类型、混凝土强度和养护条件等因素对UHPC-混凝土界面黏结性能的影响。结果表明:键槽可以提高UHPC-NC界面黏结强度,其中B型键槽机械联锁作用贡献最大。劈裂拉伸试件界面中心轴线的应变大于两侧应变,界面裂缝从水平拉应变开始向压应变区域扩张。复合试件键槽的存在使得裂缝在混凝土内部由一端延伸至另一端,并非两端向内发展。随着后浇混凝土抗压强度的提高,界面劈裂抗拉强度增幅降低。蒸汽养护导致初始收缩变形较大,应力集中区域比标准养护试件更大。复合试件界面劈裂抗拉强度可以通过混凝土立方体抗压强度和拟合参数c计算得出。提出了最优永久性模板键槽参数和养护条件。  相似文献   

18.
正交异性钢-超高性能混凝土(UHPC)组合桥面板中UHPC早期收缩较大,在组合桥面板界面约束下会产生较高次内力,存在开裂的风险,进而引发结构的安全和耐久性问题。为此,基于实际工程背景,对含湿接缝的组合桥面板收缩效应开展90 d的自然环境下常温养护静置监测研究,考察组合桥面板UHPC收缩及其引发的次内力发展及分布规律,探究龄期差对湿接缝区域收缩效应发展的影响特点;建立板壳实体有限元模型,通过多模型线性叠加的方法来模拟组合桥面板湿接缝浇筑前后的收缩效应。试验和有限元分析结果表明:在炎热潮湿的养护环境下,UHPC收缩发展经历了早期膨胀、初凝硬化后快速收缩、缓慢收缩以及稳定4个阶段;UHPC在浇筑后约6 h初凝硬化,以此刻应变为参照测得前72 h收缩量约为700×10-6,在此期间测得钢板翼缘最大压应变约为78×10-6;UHPC收缩在靠近桥面板边缘区域更大,靠近板中心区域更小;湿接缝处在初凝硬化后测得的收缩量比周边区域更小,湿接缝与周边连接完好,收缩引发的UHPC拉应力在湿接缝附近有增加的趋势。研究结果可为含湿接缝组合桥面收缩研究积累监测数据和分析基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号