首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
在振动流化床中对氢气还原分解磷石膏反应进行了研究,考察了氢气体积分数、反应温度、气体流量、床层高径比及反应时间对磷石膏分解反应的影响.结果表明:随着氢气浓度升高,分解率有增大趋势,但脱硫率先增加后减少;反应温度越高以及物料高径比越小,分解率与脱硫率越高;过高或过低的气体流量都不利于磷石膏的分解,当气体流量为242 mL/min时,分解率与脱硫率最高;并且反应时间越长,磷石膏分解越充分,但应设定范围.当还原分解温度1 050℃,氢气体积分数为5%,物料高径比为1.2,气体流量为242 mL/min(u=20 umf),反应时间为60 min,磷石膏的分解率与脱硫率分别能达到98.78%和84.24%,能满足磷石膏制酸联产水泥的要求,可用于指导磷石膏还原分解制酸联产水泥的新工艺研究.  相似文献   

2.
以磷石膏为原料,利用其与碳酸铵的反应,制备出硫酸铵,并研究了硫酸铵溶液的结晶方法.考查了物料比、反应温度、反应时间、搅拌速度和液固比等因素对磷石膏中硫酸钙转化率的影响.在物料比n(CO32-)/n(SO42-)为1.15,50℃,120 min,搅拌器转速100 r/min,液固比为5:1 mL/g时,磷石膏中硫酸钙转化率可达98.68%.以无水乙醇为溶析剂,从硫酸铵溶液中结晶出硫酸铵,结果表明,结晶温度和硫酸根离子浓度对结晶率影响显著,适宜的结晶温度为25℃,硫酸根浓度越高,结晶率越高.  相似文献   

3.
为了降低磷石膏生产造成的环境污染及资源浪费,利用磷石膏与氨水、二氧化碳的反应,制备出硫酸铵.用单因素试验法研究了氨碳摩尔比、液固摩尔比、反应时间、加入批次4个因素对磷石膏中硫酸钙转化率的影响,并得到了优化工艺参数.在室温条件下(25℃),工艺条件是氨碳摩尔比为1.15∶1,反应时间为1.5h,液固摩尔比为2.5∶1,加入批次为3次.结果表明,在优化工艺条件下磷石膏中硫酸钙最大转化率可达到99.08%,硫酸铵中氮质量含量(干基)可达到国家标准一等品指标,游离酸(硫酸)可达合格品指标.用磷石膏生产硫酸铵,不仅解决了磷石膏堆放造成的环境问题,同时也实现了硫资源的循环利用,具有潜在的社会效益和经济效益.  相似文献   

4.
磷石膏是磷酸生产中产生的固体废渣,用于制备石膏晶须并且可以充分利用资源,减少污染。采用常压水化法制备磷石膏晶须,探究pH对水处理前后磷石膏的晶须生长情况的影响。结果表明:磷石膏中的杂质能够抑制硫酸钙的分解,降低磷石膏的溶解度,且Ca3(PO4)2的生成抑制了硫酸钙的再沉淀,延缓了硫酸钙晶须生成时间和降低了晶须的质量;水处理后的石膏较处理前石膏更适宜于生长晶须,晶须的杂质也更少;pH=5是晶须生长的最佳pH,在此pH下,石膏具有最大的溶解度,晶须具有最大的长径比,可达到56。  相似文献   

5.
简要介绍了磷石膏的组成、危害以及现状.利用高硫煤还原分解磷石膏进行了试验研究,得到了高硫煤还原分解磷石膏时,磷石膏在约1000℃时进行分解,并且在1 200℃达到最高的分解率与脱硫率.随着反应温度的升高,磷石膏的分解率与脱硫率在提高,同时磷石膏分解率达到97%的反应时间逐渐减少.利用高硫煤还原分解磷石膏,可以有效提高烟气中SO2的浓度,磷石膏与高硫煤摩尔比约为0.7时,SO2浓度达到最高约14%,增加了磷石膏再利用的经济效益.  相似文献   

6.
对磷石膏在流化床中的关键过程进行了研究,针对磷石膏难于流化的特点,分别对高速流化状态下和低速振动流化状态下磷石膏的分解反应进行比较.采用正交实验法对磷石膏高速流态化分解的影响因素反应温度、CO浓度、气体流量以及反应时间进行了考察,结果发现不同条件下磷石膏的分解率均较低;进一步考察了输入一定振动能量后磷石膏的分解情况,结果发现磷石膏分解率达到近50%,且生产SO2的体积分数维持在10%以上,反应开始时高达28.27%,能较好地满足磷石膏制酸联产水泥中制酸工艺的需要.由此表明低速振动流化分解可以作为实现磷石膏窑外分解的发展方向.  相似文献   

7.
采用热分析法研究了高含量Al2O3填料对环氧树脂(E51)/二氨基二苯甲烷(DDM)体系的固化表观活化能、热降解动力学和性能的影响.非等温差式扫描量热法(DSC)固化动力学研究表明,加入Al2O3体系的反应活化能由51.49 kJ/mol降低至48.12 kJ/mol;用n级非等温动力学法分析获得了固化反应的动力学参数.利用热重分析研究了环氧固化物体系的热降解动力学,用FWO方法计算固化物降解活化能结果表明,Al2O3粉体对E51/DDM体系初始分解活化能影响不大,当降解率达到30%时,Al2O3粉体对E51/DDM体系分解有明显的抑制作用.热重红外联用测试结果表明,甲烷、羰基化合物、胺和双酚A是E51/DDM热分解过程中的主要产物,Al2O3粉体能提高E51/DDM体系的热稳定性.动态热机械研究表明,Al2O3的加入增大了环氧树脂固化产物的储能模量.DSC测试结果表明,Al2O3加入后,体系的玻璃化转变温度由114.16℃提高到121.51℃.  相似文献   

8.
磷石膏是湿法生产磷酸的副产物,其中含有可溶性氟、磷、有机物、共晶磷等杂质,这些杂质使得磷石膏性能劣化,对磷石膏的利用存在着严重影响.本文对处理磷石膏中有害杂质的不同方法以及工艺路线进行了综述.并找出一条合理的工艺路线对磷石膏中的有害杂质进行处理.  相似文献   

9.
在N2气氛下进行磷石膏还原分解制备硫化钙的研究,选择粒度分析仪测定原料粒径大小,XRD和扫描电镜表征原料和分解物固相特征。考察了原料摩尔配比、反应温度、反应时间和反应气氛等对磷石膏还原分解制备硫化钙的影响。结果表明:在N2气氛下,通过无烟煤过量形成充分的还原性气氛,磷石膏中硫酸钙被C或CO还原生成硫化钙。最佳的反应条件∶无烟煤∶磷石膏(C∶S)=2.4∶1;反应最佳温度900~1 000℃;反应时间2h,磷石膏转化率可达97.60%。  相似文献   

10.
采用正交实验方法对乙醇体系中制备磷酸铁的工艺参数进行了优化分析,研究结果表明影响磷酸铁粒度分布的工艺参数主次顺序依次为乙醇的加入速度、反应温度和搅拌速度,且乙醇的加入速度是影响磷酸铁粒度分布的关键因素。当乙醇的加入速度为40 L/min,反应温度为90 ℃,搅拌速度为60 r/min时,制备磷酸铁的d50为0.73 μm;当乙醇的加入速度为10 L/min,反应温度为50 ℃,搅拌速度为120 r/min时,制备的磷酸铁的d50为2.10 μm。通过对磷酸铁进行SEM、BET和XRF分析,当d50为0.73 μm时,比表面积大于60 m2/g;当d50为2.10 μm时,比表面积约为45 m2/g,两种磷酸铁的磷铁物质的量比近似为1:1,当磷酸铁的粒度较细时,其杂质硫含量相对较高。  相似文献   

11.
对高浓度磷化工废水进行处理,采用一级反应槽[Ca(OH)2]/一级斜板(PAM)絮凝沉淀和二级反应槽[FeSO4+Ca(OH)2]/二级斜板(PAM)絮凝沉淀,并提供了该工艺所需构筑物和设备的选型. 经该工艺处理后的水质指标为:COD≤80 mg/L,ρ(F)(Fluorine)≤15 mg/L, ρ(P)≤20 mg/L,ρ(As)≤0.5 mg/L,ρ(SS)≤50 mg/L,6≤pH≤9,符合《磷肥工业水污染物排放标准》(GB 15580-2011). 本工艺对磷化工废水的处理具有良好的效果,能有效去除磷氟砷等杂质.  相似文献   

12.
采用高能球磨方法制备LiBH4-NdCl3储氢材料体系,系统研究了预球磨、球磨时间、球粉比和掺杂量等工艺参数对体系的影响规律,阐明NdCl3对LiBH4放氢过程的作用机制. 研究发现,NdCl3对LiBH4放氢性能的改善作用是通过去稳定化反应进行的. 通过预球磨使NdCl3纳米化并能够提供额外的表面能,促进去稳定化反应的进行,从而有效地改善LiBH4的放氢性能. 最佳的球磨时间和球粉比与NdCl3的原始状态有关,应根据颗粒大小、晶粒尺寸、表面状态等因素做出最优选择. 增加NdCl3掺杂量能够提高LiBH4与NdCl3的接触面积,提升反应效率,进而显著提高LiBH4的放氢性能.  相似文献   

13.
采用EDTA络合滴定法和重量法分别测定了磷石膏中硫酸钙的含量.研究表明EDTA络合滴定法由于滴定过程中颜色难以准确判断,致使分析结果误差较大.采用重量法分析磷石膏硫酸钙含量时,由于其中的硫酸钙在水中的溶解不完全,使分析结果明显偏低.为此,对重量法进行了改进,即在添加蒸馏水溶解硫酸钙时同时添加适量的盐酸并加热,使磷石膏中的硫酸钙溶解性大大提高,进而提高了重量法分析磷石膏硫酸钙含量的精确性与准确性.结果表明改进后的重量法适于分析磷石膏中硫酸钙含量.  相似文献   

14.
李显波      刘志红      张小武      卯松      张覃     《武汉工程大学学报》2017,39(6):550-556
采用浮选试验,结合溶液化学计算、方差分析、扫描电镜和X射线荧光光谱分析等手段研究难免离子对中低品位钙镁质磷矿石反浮选的影响. 研究结果表明:矿浆中Ca2+和Mg2+会降低浮选磷精矿中P2O5含量而提高MgO含量,原因是Ca2+和Mg2+会沉淀捕收剂解离的RCOO-,降低其有效浓度;SO42-会降低磷精矿中P2O5回收率,其作用机理是由于SO42-能与Ca2+作用生成硫酸钙沉淀并覆盖在氟磷灰石和白云石表面,增强氟磷灰石的可浮性,导致氟磷灰石随白云石一起浮出;PO43-对浮选影响较小;Ca2+、Mg2+、SO42-和PO43-对磷精矿中SiO2、Al2O3和Fe2O3含量影响较小. 由于Ca2+和SO42-分别对磷精矿P2O5品位和P2O5回收率影响显著,因此在回水利用过程中需控制矿浆中Ca2+和SO42-浓度,降低其对浮选的影响.  相似文献   

15.
不同A位元素(La、Y、Ca)的ACu3Ti4O12陶瓷介电性能研究   总被引:3,自引:0,他引:3  
利用传统陶瓷烧结方法,成功制备了巨介电常数陶瓷CaCu3Ti4O12以及Ca被Y或La取代后的Y2/3Cu3Ti4O12和La2/3Cu3Ti4O12体系.利用X射线衍射仪,测定了材料的物相结构,利用阻抗分析仪测定了不同频率和温度下材料的介电常数和介电损耗.研究结果表明,3种材料结构相似,都具有相同的类钙钛矿结构,但Y2/3Cu3Ti4O12 、La2/3Cu3Ti4O12系统中具有较多的缺陷,这些缺陷是由Y和La取代Ca产生的,会对材料的介电常数产生很大的影响.体系满足极化模型,极化粒子的松弛活化过程直接与所需克服的势垒相关,而不同体系中存在的不同缺陷改变了ACu3Ti4O12体系的松弛激活能,在Y和La取代Ca后的体系中松弛激活能要远大于取代前的CaCu3Ti4O12体系.  相似文献   

16.
在国家“双碳”战略背景下,利用CO2提高油田采收率是封存CO2的重要手段,但液态CO2的安全储存、输送仍存在挑战,其中杂质气体对液态CO2热力学物性的影响非常大。对现场取样的CO2进行分析,确定了常见的7种杂质气体,并利用HYSYS、分子动力学模拟方法对含杂质CO2的物性变化进行模拟计算,绘制物性版图并将其与纯CO2的物性进行比较。研究表明,7种杂质均能使CO2相图的气液共存两相区范围扩大,但不同杂质使气液共存两相区范围的扩大幅度不同;杂质主要通过泡点线的变化扩大气液共存两相区,而对露点线的变化影响不大;在含C2H6、C3H8、C2H4杂质的CO2混合气体中静电势能占据主导作用,因此相比于含H2、CO、CH4、羰基硫(OCS)的混合气体,其宏观物性受温度、压力波动的影响较小。  相似文献   

17.
磷石膏主要成分为二水硫酸钙,硫酸钙溶解后溶液中含有大量的硫酸根,通过测定硫酸根的含量,可以计算出溶液中磷石膏的含量,进而求出磷石膏对应的溶解度。用铬酸钡分光光度法测定磷石膏的溶解度,在420nm波长处,硫酸钙为0~0.50mg/mL时与铬酸根吸光度呈线性关系。通过与传统的分析方法对比,可以验证实验结果的可靠性。该方法简单、快速、可行性强,可用于测定磷石膏的溶解度,可以满足测定要求。  相似文献   

18.
以亚硫酸镁模拟氧化镁湿法脱硫浆液对NO2进行吸收,考察不同操作条件下的NO2吸收效率及吸收液中主要离子的分布情况. 结果表明,O2对吸收过程的影响很大,NO2主要通过与SO32?之间发生的链式反应在液相中产生SO42?和NO2?,O2会与NO2发生竞争作用,极大地消耗了SO32?,导致脱硝效率迅速下降. 抗氧化剂邻苯二酚的添加可以抑制SO32?的氧化,且添加的浓度越高,抑制效果越好. 溶液的pH值主要通过影响S(IV)的存在形态来影响吸收反应,当pH值较低时,吸收反应的速率降低,且在酸性条件下,NO2?易发生歧化反应转化为NO3?. NO2?的累积将会在一定程度上降低NO2的吸收,其他阴离子NO3?、SO42?及Cl?对NO2的吸收无明显影响. 金属阳离子例如Mn2+及Co2+会加速SO32?的氧化,在一定程度上影响NO2的吸收.  相似文献   

19.
将超声波技术引入到废旧锌锰电池的浸出过程中以强化锰的浸出。利用单因素实验研究了超声波功率、硫酸浓度、反应温度、液固比对锰浸出率的影响,确定了超声波强化浸出锰的较好的工艺条件。通过有、无超声波条件下的对比实验研究了超声波的强化效果。最后以浸出液为锰源,制备了Mn34 产品。研究发现,超声波功率、硫酸浓度、反应温度和液固比均对废旧锌锰电池中锰的浸出有重要影响,实验范围内较好的工艺条件为:超声波功率60W、硫酸初始浓度3.0mol/L、反应温度60℃、液固比10∶1(mL∶g)。在此工艺条件下,锰的浸出率比无超声波引入时提高了12%左右。利用浸出液直接制备的Mn34 纯度较高。  相似文献   

20.
固体废弃物磷石膏大量的堆放既占用土地,又会对环境造成污染,以磷石膏为原料制备半水硫酸钙晶须是拓展磷石膏综合利用的新途径。以安徽新中远化工科技有限公司提供的磷石膏为样品,利用样品磷石膏及经过水洗净化处理的磷石膏为原料,分别在优化的条件下水热和煅烧合成半水硫酸钙晶须。通过FT-IR、XRD、SEM等对样品与产品进行表征,并对其各项表征结果作对比分析。结果表明:水洗净化后的磷石膏合成的晶须纯度较高;优化条件下水热和煅烧合成的晶须均为半水硫酸钙晶须,且煅烧合成的晶须效果较水热合成的晶须好。 更多还原  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号