首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为了研究侧面级联耦合器对光纤激光器的影响,对自主研制的(1+1)×1侧面泵浦耦合器,以及某商品化的(2+1)×1耦合器进行了研究.实验中分别测试了2种耦合器的耦合效率,泵浦光传输损耗,以及信号光泄露等参数,然后用2种结构的耦合器分别搭建了光纤激光器.在耦合器为(1+1)×1结构的激光器中,注入975 nm泵浦功率444 W时,1 080 nm激光功率输出344 W,光-光转换效率77%;在耦合器为(2+1)×1结构的光纤激光器中,当975 nm泵浦功率注入444 W时,1 080 nm激光功率输出260 W,激光器的光-光转换效率59%.对比2种结构的激光器可以看出:对于目前商用的(2+1)×1耦合器来说,由于传输损耗比较大,很难实现级联结构,而实验室自主研制的侧面耦合器能够实现5个级联.  相似文献   

2.
报道一种基于自反馈光注入的单频窄线宽光纤激光器。激光器采用线形腔结构,用高掺杂Er3+光纤作为增益介质,利用输出信号光分束反馈与腔内振荡激光干涉,形成折射率光栅与增益光栅共同作用选择纵模,获得稳定的1 549.85 nm单频窄线宽激光输出。在975 nm单模激光二极管(LD)抽运下,激光器的抽运阈值光功率为13 mW。当抽运光功率为112 mW时,最大输出信号光功率为30.6 mW,对应的光-光转换效率为27.3%,斜率效率为30.2%,信噪比大于50 dB。采用延时自外差方法测量线宽,当使用30 km单模光纤延迟线时,测量得到激光器的3 dB线宽为4.0 kHz。  相似文献   

3.
理论分析了线宽对受激布里渊散射阈值的影响,使用噪声信号直接调制分布反馈半导体激光器构成可调线宽激光光源,搭建了受激布里渊散射阈值测量系统.结果表明,可调线宽激光的频谱与所使用的噪声信号的频谱类似,光谱与分布反馈半导体激光器输出光的光谱相比明显展宽.当可调线宽激光光源使用400 m V噪声信号进行调制时,长度为900 m单模光纤的受激布里渊散射阈值为616 m W,与使用DFB激光器测量的106 m W阈值相比,提高了7.6 d B.因此,可调线宽激光光源可以提高光纤的受激布里渊散射阈值,增加长距离光纤通信和光载电能传输系统中的光功率.  相似文献   

4.
利用光纤耦合激光二极管端面泵浦固体激光器,研究了在近阈值条件下,泵浦光偏离振荡光谐振腔轴线距离的变化对激光器输出模式、阈值功率、斜效率和光束质量的影响.实验结果表明,当泵浦光相对振荡光谐振腔轴线的偏离量增加时,激光振荡阈值、斜效率和光束质量因子将增大;激光输出模式从低阶向高阶厄米-高斯模转变,并且在相同的泵浦光偏离位置下,随着泵浦光电流的增大,晶体热效应显著,模式竞争加剧,会出现高阶向低阶厄米-高斯模的转变.  相似文献   

5.
报道了窄线宽、可调谐外腔半导体激光器的一些研究成果.利用闪耀光栅作反馈元件,对市售的半导体激光器形成弱耦合外腔,改善了半导体激光器的性能,实现了光谱特性较好的窄线宽单模激光输出,其边模抑制比大于30dB,线宽小于0.06nm.最大输出功率为35.4mW,总的光一光转换效率为46%.通过调整光栅转角,得到11.66nm的波长调谐范围.  相似文献   

6.
为获得大能量、百纳秒脉宽的1 064 nm激光稳定输出,首先理论分析了激光的泵浦能量和谐振腔长度对输出脉宽的影响,然后对Nd∶YAG固体激光器进行设计,采用折叠谐振腔、振荡-放大结构和电光调Q技术相结合。实验结果表明:当重复频率为1 Hz、泵浦电压在1 200~1 400 V变化时,实现了脉宽范围为152.6~95.71 ns的稳定1 064 nm激光输出,最大单脉冲能量可达171 mJ;以激光器的输出激光作为基频光,设计了柱透镜组光束耦合系统,将基频光光斑整形为椭圆形状,实现了基频光的高效耦合和周期极化LiNbO3(PPLN)光参量振荡器的稳定运行;采用耦合后的光束泵浦MgO∶PPLN晶体,获得了1.47μm近红外信号光的稳定输出。  相似文献   

7.
为了研究端面泵浦固体激光器时,泵浦光焦斑位置对激光器输出性能的影响,建立了交叠积分的计算模型,计算了确定的谐振腔结构和泵浦光束分布时的交叠,数值模拟出了不同泵浦光焦斑位置时,激光器的输出性能.得到了该结构下泵浦光的焦斑位置,以及焦斑位置对激光器输出性能的影响.结果表明最佳阈值泵浦功率和斜效率对焦斑位置比较敏感,且焦斑位置位于增益介质中距离泵浦面1.3 mm时,激光输出功率最大,泵浦效果最佳.  相似文献   

8.
针对光子晶体光纤之间直接熔接损耗较大的问题.文中采用纳秒激光器作为泵浦源,通过光子晶体光纤与单模光纤HI-1060低损耗熔接的方法,研究了超连续谱的展宽过程,分析了超连续谱的产生机理.实验结果表明:泵浦源在重复频率为150kHz、泵浦功率为2.2W时,利用20m的光子晶体光纤与1m的单模光纤的熔接实现了输出功率为0.48W、光谱范围超过1100nm的超连续谱输出.  相似文献   

9.
利用长度仅为6.4 cm的自制单模 Er3+/Yb3+共掺磷酸盐光纤作为激光工作物质, 采用F-P型谐振腔结构,在中心波长为980 nm的多模LD光源的泵浦下,实现了较稳定的连续单模激光输出,其输出功率大于40mW, 中心波长为1 534.5 nm,3 dB线宽小于1 nm.实验表明,通过优化谐振腔的参数,可望在自制单模磷酸盐光纤中实现窄线宽的单频激光输出.  相似文献   

10.
利用光纤耦合InGaAs半导体激光器作抽运源,研制一台端面泵浦薄片式全固态Yb:YAG激光器.使用掺杂浓度为6%的Yb:YAG晶体,在泵浦功率20 W时,基于平-凹腔获得2.6 W的TEM00模1 030 nm连续激光输出,光束发散角为10 mrad,阈值为3.2 W,光光转换效率为13%,斜效率为18.6%.  相似文献   

11.
利用100m非线性光子晶体光纤,以光纤光栅对作为谐振腔,研制成功了低阈值光子晶体光纤拉曼激光器.该光子晶体光纤拉曼激光器的闽值为2W,在抽运功率6.2W时,得到最大功率为1.8W.波长为1115.9nm的连续拉曼激光输出,拉曼半峰全宽为1.39nm,对应光-光转化效率29%,斜率效率41%.且在低功率连续光泵浦下观察到5级拉曼荧光.  相似文献   

12.
In this contribution, we present the tandem pumping avenue leveraged performance scaling of random fiber laser to record 3 kW level with inherent temporal stability and near-diffraction-limited beam quality. The high power system employs a four-stage master oscillator power amplifier chain. The master oscillator is a half-opened cavity structured random distributed feedback fiber laser centered at 1080 nm and pumped by incoherent amplified spontaneous emission source. Narrowband random laser seed is selected by employing a spectral filtering module with a maximum output power of 1.08 W, full width at half maximum linewidth of 0.47 nm and spectral optical-signal-to-noise ratio of about 42 dB. As to the main amplification stage, for given 104 W pre-amplified random laser seed and 3.61 kW pump laser, an ultimate output power of 3.03 kW can be obtained,corresponding to an optical-to-optical conversion efficiency of 81.05%. Nearly single-transverse-mode amplified random laser can be achieved even at full power level for inherent high thermal modal instability threshold enabled by tandem pumping and inducing bending loss for high-order transverse-mode. Further performance scaling of this high power random laser system, such as power boosting, operation wavelength tuning and linewidth alteration, is the next goal.  相似文献   

13.
采用纳秒激光器作为泵浦源,在光子晶体光纤中实现宽带超连续谱输出,并研究泵浦脉冲重复频率对超连续谱产生的影响.在重复频率150 kHz、峰值功率256 W时,利用25 m长光子晶体光纤实现输出功率为0.76 W、光谱范围超过1 200 nm的超连续谱输出.利用该激光器的重复频率可调性,选取重复频率50 kHz和100 kHz的泵浦脉冲,对平均功率相同、重复频率不同的3组泵浦条件所形成超连续谱进行对比,发现在平均功率相同时,重复频率越低的泵浦脉冲获得的超连续谱宽度越宽.  相似文献   

14.
实验中采用激光二极管作为泵浦源、大模面积Er3+Yb3+共掺双包层光纤作为增益介质,利用傅里叶变换透镜、闪耀光栅和输出耦合镜组成的外腔结构,实现了两路Er3+Yb3+共掺双包层光纤激光器的频谱组束。在单路光纤激光器的最大输出功率为520 mW和545 mW、光栅衍射效率为80%的条件下,获得了690 mW的组束功率,组束效率为65%,同时对组束激光的光束质量进行了评估。测得水平和垂直方向的光束质量因子分别为M2x=1.592,M2y=1.335。  相似文献   

15.
基于光纤环形镜的掺铒光纤激光器   总被引:2,自引:0,他引:2  
分析了光纤环形镜的工作原理,提出了基于光纤环形镜和光纤Bragg光栅的掺铒光纤激光器,对其输出功率进行了分析。在98nmLD泵浦下,最大输出功率为5mW,激光器的阈值功率为8mW,斜率效率为4.2%。  相似文献   

16.
研究了纳秒脉冲在光子晶体光纤中的演化和传输.利用纳秒激光器产生脉宽为65ns、重复频率为150 kHz光脉冲,泵浦25 m的光子晶体光纤,获得了输出功率为0.76W、整个光谱范围超过1200 nm的超连续谱.在光谱展宽的初始阶段,光谱的展宽来源于调制不稳定性效应.随着泵浦功率的增加,发现四波混频效应对光谱短波部分的展宽起作用,受激拉曼散射效应对光谱长波部分的展宽起作用.  相似文献   

17.
高功率掺镱光纤超荧光源是一种兼具荧光及激光特性的高亮度光纤光源,近年来发展十分迅速.其输出波长和光谱线宽可以在1μm波段灵活调制,连续输出的平均功率和脉冲输出的峰值功率均可达到kW量级,光束质量不逊于常规高功率激光器,在激光材料加工、高功率光谱合束等领域有着巨大的应用潜力.主要综述了高功率掺镱光纤超荧光源的发展历史、最新研究进展,最后介绍了本课题组在高功率掺镱光纤超荧光源所做的研究工作.  相似文献   

18.
1480nm激光泵浦单模光纤受激拉曼效应实验研究   总被引:1,自引:0,他引:1  
用拉曼光纤激光器产生的中心波长为1480nm的连续激光作为泵浦源,研究不同泵浦功率下76km常规单模光纤所产生的受激拉曼散射现象.实验中,泵浦功率从100mW到4W逐次注入光纤中.当泵浦功率增至2 2W时,观察到拉曼现象,发生泵浦能量向斯托克斯能量的有效转移,散射光强呈指数规律增长.在频移13 26THz处获得最大增益,呈现单峰斯托克斯光谱,其线宽大约为2nm,随着泵浦功率增强,基本保持不变.当泵浦功率增至2 5W时,呈现双峰斯托克斯光谱,斯托克斯峰442cm-1(13 26THz)处的峰值功率基本饱和,而485cm-1(14 6THz)处的尖峰却持续增长;且较短波长峰渐渐向长波长峰靠近,发生显著能量红移.  相似文献   

19.
为了研究微结构光纤在光流体技术中的应用,在空芯光子晶体光纤(hollow-core photonic crystal fiber,HCPCF)纤芯中充入四氯化碳(CCl_4)制成液芯光学微池,用1 064 nm的光源泵浦,测量CCl_4的受激拉曼散射特性.利用包层孔塌缩技术将纤芯直径10μm,长1.8 m的HC-PCF两端包层孔堵住,CCl_4在毛细作用力及外部压力下充满纤芯,其后将两端切去,由于包层空气孔的有效折射率(约1.1)低于CCl_4(约1.45),保证了全反射原理导光.用中心波长1064 nm,重复频率200 kHz,脉宽186ps,可调谐输出功率为0~1 W的光纤激光器作为泵浦源,泵浦CCl_4液芯光纤产生了两级拉曼斯托克斯谱线输出,分别在1118、1172.3 nm处.通过调节泵浦功率测得一阶拉曼阈值对应的峰值功率为0.94 kW.结果表明:微结构光纤是光流体技术的良好载体.  相似文献   

20.
针对波分复用系统要求掺铒光纤放大器(EDFA)必须具备增益锁定功能,提出采用单根光纤光栅的方法来箝制L-band EDFA的增益.基于考虑自发辐射噪声(ASE)的Giles模型,建立了EDFA的全光增益箝制理论模型.系统分析了四种可能的光路结构、泵浦波长、光纤光栅反射波长和反射率、泵浦功率以及掺铒光纤长度等参量对箝制特性的影响.最后给出一组使EDFA在箝制增益的同时保持增益谱平坦的最佳结构和放大器参量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号