首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
讨论了聚乙二醇(PEG200、PEG400、PEG600)对PVC/PVDF/PMMA共混溶液的剪切粘度及其共混膜的断面形态结构、水通量、截留率和机械性能等膜性能的影响。结果表明,在聚合物质量百分含量不变的情况下,PEG200、400、600的加入均能使铸膜液的粘度增加,PEG200使粘度增加的最多,PEG600最少;PEG600使PVC/PVDF/PMMA共混膜水通量增加的最多,PEG200最少,而PEG200使膜的截留率增加最多,PEG600最少。  相似文献   

2.
研究了非离子及阴离子型表面活性剂(聚乙二醇、聚氧乙烯月桂醚和十二烷基苯磺酸钠)对铝酸钠溶液晶种分解制备一水软铝石的影响. 结果表明,十二烷基苯磺酸钠抑制溶液分解及晶体附聚,导致产物粒度细化;聚乙二醇可强化溶液分解,并促进晶体附聚;PEG1000添加量为1 g/L时获得最高分解率(32.39%),较空白提高8.37%;PEG1000添加量为5 g/L时附聚效果最好,产物的中位粒径为23.86 mm,较空白提高4.5%. XRD和热重分析结果表明,添加剂未改变产物晶型,产物均为一水软铝石和三水铝石.  相似文献   

3.
本文考察不同浓度以及不同溶剂聚乙二醇200、聚乙二醇400、复配型的聚乙二醇/丙三醇(PEG/Gl)对二氧化硅/聚乙二醇(SiO2/PEG)剪切增稠体系的影响,采用流变仪测试该剪切增稠液的稳态流变性能。测试表明,复配型分散介质的增稠效果不如单一分散介质,临界剪切速率PEG400PEG200SiO2/PEG400/GlSiO2/PEG200/Gl,因此当需要在较小剪切速率条件下增稠时,应选用分子量较大的聚乙二醇单一分散介质;同时,分散相质量分数越高,体系的增稠现象也愈明显。  相似文献   

4.
何丽红  王浩  杨帆  朱洪洲  唐伯明 《化工进展》2018,37(3):1076-1083
利用多孔二氧化硅的良好吸附性,将不同计量的聚乙二醇在硅溶胶胶凝过程中吸附于硅凝胶的孔隙结构中制备聚乙二醇/二氧化硅定形相变材料(PEG/SiO2 SSPCM);并将其与熔融沥青共混获得不同聚乙二醇含量的沥青-定形相变材料(Asphalt-SSPCM)。借助孔径分析仪和扫描电镜(SEM)表征了载体二氧化硅孔结构和PEG/SiO2 SSPCM的表观形貌;通过X射线衍射仪(XRD)、综合热分析仪(DSC/TG)和傅里叶红外光谱仪(FTIR)考察了沥青中PEG/SiO2 SSPCM的晶体结构、储热性能、热稳定性及化学兼容性;通过本文作者课题组研发的温度模拟试验箱测试了Asphalt-SSPCM的降温效果。结果表明,二氧化硅凝胶具有丰富的孔结构并能将聚乙二醇吸附于其介孔结构中;沥青中PEG/SiO2 SSPCM仍含有聚乙二醇晶体,其储热能力随聚乙二醇含量的增加而增大,当聚乙二醇含量为76.1%时,相变焓高达117.5J/g,且不同聚乙二醇含量的沥青-定形相变材料均表现出良好的热稳定性;PEG/SiO2 SSPCM与沥青的化学兼容性良好,二者之间仅是物理作用;Asphalt-SSPCM的降温效果显著,可有效改善沥青路面的高温性能;并基于相变理论,分析了沥青-定形相变材料的相变储热原理。  相似文献   

5.
通过溶液浇铸法制备了聚乙二醇/纤维素纳米微纤(PEG/CNFs)复合相变储能材料,采用差示扫描量热仪(DSC)研究了CNFs含量对该PEG/CNFs复合材料中PEG结晶行为的影响,并利用Jeziorny、Ozawa和Mo模型对DSC结果进行了非等温结晶动力学分析。结果表明:加入CNFs后,复合材料中PEG的半结晶时间(t1/2)与Avrami指数(n)下降,表明CNFs充当了PEG的成核剂;另外,CNFs含量的增加抑制了PEG晶体的生长,PEG的结晶焓(ΔHPEG)显著下降。  相似文献   

6.
贾翠  谢志鹏  刘伟  孙加林 《陶瓷学报》2011,32(2):145-149
提出了陶瓷注射成型水萃取脱脂粘结剂组分相容性的三大判断方法:溶解度参数法、热力学计算法、扫描电子显微镜法,以评判水基注射料的相容性,为陶瓷注射成型水萃取脱脂粘结剂的相容性提供了理论依据以及评判标准。并以聚乙二醇(PEG)/聚乙烯醇缩丁醛(PVB)以及聚乙二醇(PEG)/聚甲基丙烯酸甲酯(PMMA)两个水基粘结剂体系为例进行说明,讨论了陶瓷注射成型粘结剂的相容性对注射料流动性及水萃取脱脂速率的影响。  相似文献   

7.
通过采用不同分子量的聚乙二醇(PEG)作为相变储能基,接枝共聚的方法制备了聚乙二醇/纤维素微球,通过扫描电子显微镜(SEM)对制备的聚乙二醇/纤维素微球的形貌进行了表征。研究结果表明PEG1000/纤维素微球和PEG2000/纤维素微球的部分微球粘连、团聚。  相似文献   

8.
总结了近年来国内外关于化学共混在聚叠氮缩水甘油醚(GAP)黏合剂的力学性能改良中的研究现状,包括聚乙二醇(PEG)、乙二醇/四氢呋喃共聚醚(PET)、3,3-双(叠氮甲基)氧丁环/四氢呋喃共聚物(BAMO/THF)、端羟基聚丁二醇(HTPB)、聚甲基丙烯酸甲酯(PMMA)在内的各种聚合物与GAP共混,通过调控反应条件得到化学交联网络,不同程度提高了黏合剂体系的力学性能。  相似文献   

9.
端基官能化PEG与PMMA共混薄膜表面接触角的研究   总被引:1,自引:0,他引:1  
潘晶  李尧  李岩  谢续明 《塑料》2006,35(5):61-64
使用硅酸酯和聚乙二醇单甲醚(mPEG)反应制得端基官能化的PEG大分子,然后将此分子与聚甲基丙烯酸甲酯(PMMA)在氯仿溶液中共混,在玻璃基板上旋转涂膜后对涂膜的表面接触角进行了研究。实验发现,官能化的mPEG在低添加量时就可有效降低体系的接触角。对不同分子量的PEG测试结果表明,在同等添加质量比情况下,低分子量的官能化mPEG表现出更好的表面改性效果,这主要是由于低分子量的PEG有较高的硅烷氧基摩尔比例和较强的运动能力所致。研究结果表明,表面接触角的降低是由于PEG分子的硅氧烷端基在PMMA表面富集造成的。  相似文献   

10.
利用拉曼光谱研究不同分子量聚乙二醇(PEG)在温度变化过程中的结晶及其相变行为。结果表明,PEG的结晶形态与分子量大小无关,这是因为尽管PEG具有不同的分子量,但其分子结构完全一致,因此不同分子量的PEG具有相同的结晶相态。实验进一步表明,不同分子量的PEG在等温结晶过程中球晶形成的大小和结晶速度与分子量紧密相关,这与PEG在结晶过程的成核方式有关。当PEG的分子量比较小时,分子链较为伸展,倾向于均相成核,容易形成较大的球晶,晶体生长速度慢;高分子量PEG的熔体黏度大,链段彼此相互交叠重合在一起,容易形成微小晶区,体系倾向于发生异相成核,因此球晶体较小,晶体的生长速度快。本研究为聚乙二醇在共混体系中的应用提供理论支撑。  相似文献   

11.
In this study, we focused on the preparation and characterization of poly(ethylene glycol) (PEG)/poly(methyl methacrylate) (PMMA) blends as novel form‐stable phase‐change materials (PCMs) for latent‐heat thermal energy storage (LHTES) applications. In the blends, PEG acted as a PCM when PMMA was operated as supporting material. We subjected the prepared blends at different mass fractions of PEG (50, 60, 70, 80, and 90% w/w) to leakage tests by heating the blends over the melting temperature of the PCM to determine the maximum encapsulation ratio without leakage. The prepared 70/30 w/w % PEG/PMMA blend as a form‐stable PCM was characterized with optical microscopy and Fourier transform infrared spectroscopy. The thermal properties of the form‐stable PCM were measured with differential scanning calorimetry (DSC). DSC analysis indicated that the form‐stable PEG/PMMA blend melted at 58.07°C and crystallized at 39.28°C and that it had latent heats of 121.24 and 108.36 J/g for melting and crystallization, respectively. These thermal properties give the PCMs potential LHTES purposes, such as for solar space heating and ventilating applications in buildings. Accelerated thermal cycling tests also showed that the form‐stable PEG/PMMA blend as PCMs had good thermal reliability and chemical stability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
The impact of branching architecture of one continuous uncrosslinked phase on properties of classic shape memory semi-interpenetrating polymer networks (semi-IPNs) was explored. Crosslinked poly (methyl methacrylate) (PMMA)/star-shaped polyethylene glycol (PEG) (PMMA/SPEG) semi-IPNs and PMMA/linear PEG (PMMA/LPEG) semi-IPNs were synthesized with the same PEG content. Mechanical properties, phase structure, thermal properties, dynamic mechanical properties, and shape memory properties of these two semi-IPNs systems were compared. Due to the better compatibility of SPEG in the PMMA network, which was derived from little crystallization compared with PMMA/LPEG semi-IPNs, PMMA/SPEG semi-IPNs exhibited a combination of large tensile strength and high elongation at break. PMMA/SPEG semi-IPNs, which had little crystallization exhibited superior shape recovery versus PMMA/LPEG semi-IPNs, which had more crystallization. Moreover, the higher the crystallinity in PMMA/PEG semi-IPNs was the worse long-term temporary shape retention. Based on tube model theory, the high shape recovery capacity of PMMA/SPEG semi-IPNs is mainly ascribed to the retraction of free PEG arms, which is entropically favorable and thermally activated due to the fluctuations of the path length. This result is supported by stress relaxation analysis and the influence of long shape fixity time on shape fixity ratio for these two systems.  相似文献   

13.
The miscibility of the components in natural rubber–poly(methylmethacrylate) blends for potential use as reinforced rubbers was evaluated using the glass transition temperatures, peak widths of the loss tangent peak at the glass transition and the complex heat capacity data obtained from dynamic mechanical thermal analysis (DMTA), and modulated differential scanning calorimetry (MDSC). In addition, the effect of the poly(methylmethacrylate) content on the dynamic mechanical and the physical properties such as tensile behavior and hysteresis loss was studied. DMTA and MDSC data clearly indicated that the blends were phase‐separated. Nevertheless, the glass transition temperature of the natural rubber component in the 30–50 wt % NR/PMMA blends has shifted to higher temperatures compared to the natural rubber treated under the same condition, indicating some limited extent of mixing of components in these blends. The physicomechanical properties including moduli at 100, 300, and 500% and tensile strength of the NR/PMMA blends were determined. Incorporation of PMMA into NR matrix improved the strength properties of the NR/PMMA blends prepared reasonably akin to interpenetrating polymer networks (IPN) polymerization method. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The thin films of poly(methyl methacrylate) (PMMA), poly(styrene-co-acrylonitrile) (SAN) and their blends were prepared by means of spin-coating their corresponding solutions onto silicon wafers, followed by being annealed at different temperatures. The surface phase separations of PMMA/SAN blends were characterized by virtue of atomic force microscopy (AFM). By comparing the tapping mode AFM (TM-AFM) phase images of the pure components and their blends, surface phase separation mechanisms of the blends could be identified as the nucleation and growth mechanism or the spinodal decomposition mechanism. Therefore, the phase diagram of the PMMA/SAN system could be obtained by means of TM-AFM. Contact mode AFM was also used to study the surface morphologies of all the samples and the phase separations of the blends occurred by the spinodal decomposition mechanism could be ascertained. Moreover, X-ray photoelectron spectroscopy was used to characterize the chemical compositions on the surfaces of the samples and the miscibility principle of the PMMA/SAN system was discussed.  相似文献   

15.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by melt mixing. The miscibility, crystallization behavior, mechanical properties and hydrophilicity of the ternary blends have been investigated. The high compatibility of PVDF/PMMA/PVP ternary blends is induced by strong interactions between the carbonyl groups of the PMMA/PVP blend and the CF2 or CH2 group of PVDF. According to the Fourier transform infrared and wide‐angle X‐ray difffraction analyses, the introduction of PMMA does not change the crystalline state (i.e. α phase) of PVDF. By contrast, the addition of PVP in the blends favors the transformation of the crystalline state of PVDF from non‐polar α to polar β phase. Moreover, the crystallinity of the PVDF/PMMA/PVP ternary blends also decreases compared with neat PVDF. Through mechanical analysis, the elongation at break of the blends significantly increases to more than six times that of neat PVDF. This confirms that the addition of the PMMA/PVP blend enhances the toughness of PVDF. Besides, the hydrophilicity of PVDF is remarkably improved by blending with PMMA/PVP; in particular when the content of PVP reaches 30 wt%, the water contact angle displays its lowest value which decreased from 91.4° to 51.0°. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
The phase behaviour of blends of a liquid-crystalline polymer (LCP) and poly(methyl methacrylate) (PMMA), as well as the phase state of blends of PMMA and poly(vinyl acetate) (PVA) has been investigated using light scattering and phase-contrast optical microscopy. The blends of LCP and PMMA have been obtained by coagulation from ternary solutions. The cloud point curves were determined. It was established that both pairs demix upon heating, ie have an LCST. In the region of intermediate composition, the phase separation proceeds according to a spinodal mechanism; however for LCP/PMMA blends, the decomposition proceeds according to a non-linear regime from the very onset. In the region of small amounts of LCP, the phase separation follows a mechanism of nucleation and growth. For PMMA/PVA blends, the spinodal decomposition proceeds according to a linear regime, in spite of the molecular mobility that PVA chains develop at lower temperatures. Only after prolonged heat treatment does the process transit to a non-linear regime. The data show a similarity between the phase behaviour of blends of liquid-crystalline and of flexible amorphous polymers. The distinction consists of the absence of a linear regime of decomposition for LCP-PMMA blends. © 1999 Society of Chemical Industry  相似文献   

17.
In the present work, blends between poly(methyl methacrylate) (PMMA) or its copolymer with butyl methacrylate P(MMA‐co‐BMA) and poly(ethylene‐co‐vinyl acetate) (EVA) rubbers obtained applying the reactive blending principles were deeply investigated to clarify the chemistry of the system. A copolymeric phase, which is created in situ, was isolated and its chemical structure was determined through NMR analysis. The blends were also crosslinked with a flexible dimethacrylate to realize semi‐interpenetrated networks. The blends were characterized for their properties of interest (mechanical and optical behaviors). Particularly, an accurate investigation of the optical properties as a function of the temperature was performed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

18.
The effect of polyethylene glycol (PEG) on the mechanical and thermal properties of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends was examined. Overall, it was found that PEG acted as an effective plasticizer for the PLA phase in these microphase‐separated blends, increasing the elongation at break in all blends and decreasing the Tg of the PLA phase. Significant effects on other properties were also observed. The tensile strength and Young's modulus both decreased with increasing PEG content in the blends. In contrast, the elongation at break increased with the addition of PEG, suggesting that PEG acted as a plasticizer in the polymer blends. Scanning electron microscope images showed that the fracture mode of PLA changed from brittle to ductile with the addition of PEG in the polymer blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43044.  相似文献   

19.
Novel ternary mixed‐brush single crystals were designed with disperse‐within‐disperse and star‐like co‐continuous morphologies based on poly(ethylene glycol) (PEG)‐b‐polystyrene (PS)/PEG‐b‐poly(methyl methacrylate) (PMMA)/PEG‐b‐polyaniline (PANI) and PEG‐b‐PS/PEG‐b‐PMMA/PEG‐b‐(poly(?‐caprolactone) (PCL) or poly(l ‐lactide) (PLLA)) block copolymers, respectively. In the disperse‐within‐disperse ternary mixed brushes, PANI nanorods were dispersed within the matrix (PS)–dispersed (PMMA) amorphous brushes. The flexibility and rigidity of brushes mainly affected the ultimate morphology and arrangement of amorphous coiled brushes in the vicinity of PANI nanorods. In addition, the migration of PCL and PLLA crystallizable brushes was evident into PMMA phases dispersed in the PS matrix, leading to star‐like co‐continuous patterns of PCL and PLLA brushes. This phenomenon was related to the miscibility of crystallizable PCL and PLLA brushes with the PMMA phase. The migration of crystallizable PCL and PLLA brushes increased the size of PMMA domains in the star‐like co‐continuous patterns. Despite the larger osmotic pressure of PLLA brushes, their higher miscibility with PMMA chains reflected the greater PMMA dispersal and wider PLLA star‐like branches. © 2017 Society of Chemical Industry  相似文献   

20.
The effects of silica nanoparticles on the phase separation of poly (methyl methacrylate)/poly (styrene-co-acrylonitrile) (PMMA/SAN) blends are studied by the rheological method. The binodal temperatures of near-critical compositions were obtained by the gel-like behavior during spinodal decomposition, which is a character of polymer blends with co-continuous morphology. The shifted Cole–Cole plot method was introduced to determine the binodal temperatures of off-critical compositions based on the appearance of shoulder-like transition in the terminal regime of blends with droplet morphology. Such method is found also applicable in nanoparticle filled polymer blends. Moreover, a new method to determine the spinodal temperature from Fredrickson-Larson mean field theory was suggested, where the concentration fluctuation's contribution to the storage modulus is used instead of the whole dynamic moduli. This method was also successfully extended to nanoparticle filled polymer blend. The influences of the concentration and the average diameter of silica particles on the phase separation temperature were studied. It was found that the small amount of the silica nanoparticles in PMMA/SAN blends will significantly change the phase diagram, which is related to the selective location of silica in PMMA. The comparisons with thermodynamic theory of particle-filled polymer blends are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号