首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the thermal stability of a BaO–CaO–SiO2–B2O3 glass sealant, named “H”, was investigated by differential scanning calorimetry (DSC). The crystallization behavior of glass H as the sealant matrix was investigated by a combination of experimental X-ray diffraction (XRD) analysis and thermodynamic simulation with the FactSage package. A good agreement was found between the Rietveld refinement of XRD experiments and the FactSage simulation. Particular attention was also given to the influence of the Sr2SiO4 filler added to the glass matrix “H” on the thermal expansion and microstructures of glass-Sr2SiO4 composites by means of dilatometry and scanning electron microscopy (SEM). The reinforced 20 wt% Sr2SiO4 composite (HS2S20) showed excellent properties and, thus, its joining performance was investigated using SrTi0.75Fe0.25O3-δ (STF25) and Aluchrom as promising oxygen transport membrane (OTM) and counterpart, respectively. The joining behaviors were investigated by comparing different joining temperatures. 920 °C is the best joining temperature for HS2S20 sealant.  相似文献   

2.
The gas tightness of glass sealing materials is a big challenge for the solid oxide fuel cell (SOFC) stacks operating at high temperature. Thermal, sintering, crystallization behavior and gas tightness properties of the glass-based with two different Al2O3 contents sealants are evaluated and discussed. The study showed that the sealants avoid cracks at the interface on NiO-YSZ (NiO-yttria stabilized zirconia) and SUS430 stainless steel interconnect substrates. The Al2O3 embedded in the glass matrix as a second phase, and promoted crystallization of K[AlSi3O8] at the early stage. This may because some ultrafine Al2O3 particles whose structure is destroyed by prolonged high temperature treatment according XRD and TEM analysis. Especially, the sealant containing 5 wt% Al2O3 undergoes a thermal cycle and maintains a stable leakage rate below 10?4 sccm?cm?1 for about 1000 h at 750 °C. The above results prove the possibility of using the Al2O3-doped sealing glass for SOFC stacks.  相似文献   

3.
《应用陶瓷进展》2013,112(6):337-343
Abstract

Within the Fe2O3–BaO–Al2O3–SiO2 glass system, the influence of different fluorine source and TiO2 on the crystallisation behaviour and thermal expansion characteristics has been investigated. These aluminosilicate glasses, with different nucleation catalysts (TiO2, AlF3 and NH4F), were successfully prepared from Saudi Arabia raw materials (red clay and magnesite). Thermal behaviour, crystalline phases, microstructures, and thermal expansion coefficient were studied by DTA, XRD, SEM techniques, as well as a dilatometer. Spinel, hexacelsian, monocelsian, kinoshitalite, and Ba-osumilite were developed in glass ceramic samples. Spinel was the early phase formed in all glasses; however, with increasing temperature, hexacelsian and kinoshitalite were developed in fluorine free glasses and fluorine containing glasses respectively. Ba-osumilite was developed and hexacelsian was converted into monocelsian during lengthy heat treatment at 1150°C. A bulk crystalline microstructure was obtained; however, a microscale structure was observed in fluorine free samples and a homogeneous nanoscale microstructure was developed in fluorine containing samples. The coefficient of thermal expansion (CTE) varied according to the phases and the heat treatment parameters. Development of spinel, hexacelsian and kinoshitalite in glass ceramic samples gave CTE values between 86·44 × 10?7 and 52·53 × 10?7°C?1, whereas crystallisation of Ba-osumilite and monocelsian gave CTE values between 51·29 × 10?7 and ?7·35 × 10?7°C?1.  相似文献   

4.
Low-softening-point La2O3-B2O3-CaO-P2O5 (LBCP) glass-ceramic/cordierite composite systems have been prepared in this work. Influence of the ratio of La2O3 to B2O3 and the content of cordierite on the sintering behavior, microstructure, sintering quality, thermal properties and dielectric properties of composites are studied. The results show that high La2O3/B2O3 ratio improves the crystalline quality of LBCP glass-ceramic, but also narrows its process window. The increase of cordierite content reduces the coefficient of thermal expansion (CTE) value of composites obviously. However, excess cordierite is detrimental to the densification of the composite microstructure, and too low cordierite content causes serious foaming. Sample containing 30?wt% LBCP1 glass-ceramic and 70?wt% cordierite sintered at 850?°C shows excellent properties: relative density of 95.26%, CTE value of 4.12?ppm/°C, dielectric constant of 4.78 (1?MHz)/4.52 (12.8?GHz), dielectric loss of 2.3?×?10?3 (1?MHz)/2.5?×?10?3 (12.8?GHz) and the ability to co-fire with silver, which suggests that LBCP glass/cordierite composite system has potential to meet the requirements of LTCC substrate material.  相似文献   

5.
The effects of Nd2O3 content (0–12 wt %) on crystalline phases, microstructure, and chemical durability of barium borosilicate glass‐ceramics belonging to SiO2–B2O3–Na2O–BaO–CaO–TiO2–ZrO2–Nd2O3 system were studied. The results show that the glass‐ceramics with 2–6 wt% of Nd2O3 possess mainly zirconolite and titanite phases along with a small amount baddeleyite phase in the bulk. Calcium titanate appears when the Nd2O3 content increases to 8 wt%, and the amount of quadrate calcium titanate crystals increases with further increasing content of Nd2O3. For the glass‐ceramics with 6 wt% Nd2O3 (Nd‐6), Nd elements homogeneously distribute in zirconolite, titanite, and residual glass phases. There is a strong enrichment of Nd in calcium titanate crystals for the sample with 10 wt% Nd2O3. The viscosity of Nd‐6 glass is about 49 dPa·s at 1150°C. Moreover, Nd‐6 glass‐ceramics show the lower normalized leaching rates of B (LRB), Ca (LRCa), and Nd (LRNd) when compared to that of the sample with 8 wt% Nd2O3. After 42 days, LRB, LRCa, and LRNd of the Nd‐6 glass‐ceramics are about 6.8 × 10?3, 1.6 × 10?3, and 4.4 × 10?6 g·m?2·d?1, respectively.  相似文献   

6.
Li2O–ZrO2–SiO2–Al2O3 (LZSA) glass ceramic systems are usually obtained from powder technology to obtain materials with a low thermal expansion coefficient (CTE). However, in these cases, there is a high residual porosity. An alternative to reduce the porosity involves the production of monoliths. Nevertheless, there is still a lack of crystallisation kinetics and the final properties of glass ceramic monoliths are affected such as electrical properties. This study aims to evaluate the electrical behaviour as function of the crystalline layer thickness formed on the monolith surface of a 17.7Li2O·5.2ZrO2·68.1SiO2·9.0Al2O3 (molar basis) glass ceramic LZSA composition. Monoliths thermally treated at 750, 800, and 850 °C were chosen to evaluate based on the range of the crystalline layer growth. Electrochemical impedance spectroscopy was used for the electrical characterisation of LZSA glass and the glass ceramics. The resistivity increased with increasing thermal treatment temperature due to the formation of lithium-based crystalline phases. The electrical conductivity at 25 °C of the glass ceramic thermally treated at 850 °C decreased to 1.4 × 10?13 S cm?1 from 8.7 × 10?11 S cm?1 for LZSA glass. Based on the electrical behaviour, monoliths thermally treated at 850 °C can be considered potential for dielectric industrial applications.  相似文献   

7.
The high volatility of boron from borosilicate glass sealants often leads to boron deposition and poisoning of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode, presenting a challenge for the development of reliable solid oxide fuel cells (SOFCs). In this paper, we report that boron volatilization from borosilicate glass at 700 °C can be significantly suppressed by appropriate NiO dopant, mainly due to the increase of Si-O-B linkages in the combining B-O? and Si-O? network. Also, the formation of boron-containing phase in NiO-doping glass-ceramics has been studied, which suppresses the reaction between glass and LSCF cathode after heat treatment at 700 °C for 1000 h. Moreover, the change of crystalline phases leads to an improvement in thermal and electrical properties. We believe that our findings will open a new way for the design and development of the reliable sealing glass for SOFCs applications.  相似文献   

8.
An effective way of providing complete sealing of glass using an 810 nm diode laser was investigated for longer lifetime of glass panel‐based devices. Small amounts (<5 wt%) of laser‐absorbing materials such as carbon black (CB) or carbon nanotubes (CNT) were added to a bismuth zinc borate glass paste for instantaneous adhesion between glass substrates without interfacial cracks or severe pores. A higher laser power was required for a lower content of carbon for the laser‐assisted sealing of glass. As optimal compositions, the addition of 1.0 wt% CB or 0.5 wt% CNT led to complete densification of glass with higher optical transmittance. Higher absorption coefficients calculated in the CNT case, e.g., ~536.4 cm?1 for the 0.5 wt% CNT sample compared to ~277.6 cm?1 for the 0.5 wt% CB sample, are believed to be responsible for the effective sealing even with a lower content of CNT.  相似文献   

9.
A strategy for improving the specific stiffness of silicon carbide (SiC) ceramics by adding B4C was developed. The addition of B4C is effective because (1) the mass density of B4C is lower than that of SiC, (2) its Young’s modulus is higher than that of SiC, and (3) B4C is an effective additive for sintering SiC ceramics. Specifically, the specific stiffness of SiC ceramics increased from ~142 × 106 m2?s?2 to ~153 × 106 m2?s?2 when the B4C content was increased from 0.7 wt% to 25 wt%. The strength of the SiC ceramics was maximal with the incorporation of 10 wt% B4C (755 MPa), and the thermal conductivity decreased linearly from ~183 to ~81 W?m?1?K?1 when the B4C content was increased from 0.7 to 30 wt%. The flexural strength and thermal conductivity of the developed SiC ceramic containing 25 wt% B4C were ~690 MPa and ~95 W?m?1?K?1, respectively.  相似文献   

10.
Polycrystalline Mo4Y2Al3B6 ceramic (92.84 wt% Mo4Y2Al3B6 and 7.16 wt% MoB) was prepared by spark plasma sintering at 1250 ℃ under 30 MPa using Mo, Y, Al, and B as starting materials. The dense sample obtained has a high relative density of 96.6 %. The average thermal expansion coefficient is 8.38 × 10?6 K?1 in the range of 25–1000 ℃. The thermal diffusivity decreases from 6.50 mm2/s at 25 °C to 4.33 mm2/s at 800 °C. The heat capacity, thermal conductivity, and electrical conductivity are 0.30 J·g?1·K?1, 11.73 W·m?1·K?1, and 0.66 × 106 Ω?1·m?1 at 25 °C, respectively. Vickers hardness with increasing load in the range of 10–300 N at room temperature decreases from 10.82 to 9.49 GPa, and the fracture toughness, compressive strength, and flexural strength are 5.14 MPa·m1/2, 1255.14 MPa, and 384.82 MPa, respectively, showing the promising applications as structural-functional ceramics.  相似文献   

11.
《Ceramics International》2023,49(3):4578-4585
Porous cordierite materials are 3D printed by robocasting from two kaolin containing raw materials mixtures. Water suspensions of both mixtures at variable solid concentrations (40–67 wt%) are characterized by rheological measurements, showing good printability for concentrations >60 wt% without the need of any printing additive. The mixtures react during sintering (at 1250 °C) giving indialite as the main phase in the structures, which differ in minor phases. Three types of lattices are printed for both compositions with a logpile inner structure. Properties of interest like the coefficient of thermal expansion (CTE), the thermal conductivity (KT) and the compression strength (σ) of the printed cordierites are determined and compared with published data. Results evidence that printing of clay containing reactive mixtures is a straightforward and cost-effective way to achieve porous complex shaped cordierite with CTE~ 2–3 x10?6 K-1, KT ~ 0.4–0.6 W m?1 K?1 and maximum σ of 24 MPa.  相似文献   

12.
《应用陶瓷进展》2013,112(2):77-80
Abstract

A castable was made using an aggregate of aluminium titanate (AT) of composition 95%Al1·57 Fe0·43 TiO5 , 2% corundum, and 3% aluminosilicate glass with 10% high alumina cement, deflocculant, and water. Cast blocks after firing at 1400°C for 6 h were used to determine physical and mechanical properties at ambient temperature. The castables had a crushing strength of 125 MPa, a bend strength of 14 MPa, and a Young's modulus of 9·6 GPa. They had a coefficient of thermal expansion (CTE) of 1·3 × 10-6 K-1 from ambient temperature to 1200°C. The low Young's modulus and CTE indicate that the castable should have excellent thermal shock resistance. The properties of the AT castable when compared with those of commercial high alumina castables showed it to have a similar strength, but much lower porosity (10%), Young—s modulus, and CTE. Phase analysis of the cast blocks showed that the major phase was iron aluminium titanate with minor phases (<10%) of corundum and a calcium aluminosilicate, which is probably a glass.  相似文献   

13.
A widely adopted approach to form matched seals in metals having high coefficient of thermal expansion (CTE), e.g. stainless steel, is the use of high CTE glass‐ceramics. With the nucleation and growth of Cristobalite as the main high‐expansion crystalline phase, the CTE of recrystallizable lithium silicate Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO glass‐ceramic can approach 18 ppm/°C, matching closely to the 18 ppm/°C–20 ppm/°C CTE of 304L stainless steel. However, a large volume change induced by the α‐β inversion between the low‐ and high‐ Cristobalite, a 1st order displacive phase transition, results in a nonlinear step‐like change in the thermal strain of glass‐ceramics. The sudden change in the thermal strain causes a substantial transient mismatch between the glass‐ceramic and stainless steel. In this study, we developed new thermal profiles based on the SiO2 phase diagram to crystallize both Quartz and Cristobalite as high expansion crystalline phases in the glass‐ceramics. A key step in the thermal profile is the rapid cooling of glass‐ceramic from the peak sealing temperature to suppress crystallization of Cristobalite. The rapid cooling of the glass‐ceramic to an initial lower hold temperature is conducive to Quartz crystallization. After Quartz formation, a subsequent crystallization of Cristobalite is performed at a higher hold temperature. Quantitative X‐ray diffraction analysis of a series of quenched glass‐ceramic samples clearly revealed the sequence of crystallization in the new thermal profile. The coexistence of two significantly reduced volume changes, one at ~220°C from Cristobalite inversion and the other at ~470°C from Quartz inversion, greatly improves the linearity of the thermal strains of the glass‐ceramics, and is expected to improve the thermal strain match between glass‐ceramics and stainless steel over the sealing cycle.  相似文献   

14.
In this article, we investigate the mixed alkaline‐earth effect in a silicate glass series with varying the molar ratio of [MgO]/([CaO]+[MgO]). This effect manifests itself as a minimum in Vickers microhardness (HV), coefficient of thermal expansion (CTE), and isokom temperatures at 1012(Tg) and 102 Pa·s, and as a maximum in liquid fragility. To probe the structural origin of the mixed alkaline‐earth effect in CTE and Hv, we conducted the Raman measurements. In contrast to the aluminosilicate glasses, the present glass series exhibit a negative deviation of shift of peak position at ~1100 cm?1 from a linear additivity, indicating the role of the aluminum speciation in affecting the vibration modes. By fitting the Vogel–Fulcher–Tamann equation to the high‐temperature viscosity data, we found a near‐linear increase of the fractional free volume with the gradual substitution of Ca by Mg, confirming the dynamic structural mismatch model describing the mixed modifier effect. This work gives insight into the mixed modifier effect in glassy systems.  相似文献   

15.
A glasslike material of the 35Bi2O3 · 40PbO · 25Ga2O3 composition is investigated. Quartz glass is used in the synthesis as the crucible material. It is shown that, compared to the platinum crucible, the high-energy transmission cutoff shifts from 650 to 500 nm, which has enabled us to study the upconversion luminescence spectra of the glass of the 35Bi2O3 · 40PbO · 25Ga2O3 composition doped by Er3+ ions in the range 500–700 nm. The upconversion luminescence spectra for the glass doped by Er3+ and codoped by Nd3+ and Yb3+ ions are obtained.  相似文献   

16.
《Ceramics International》2023,49(12):19708-19716
A low leakage rate sealant of 10 wt% ZrO2-added CaO–K2O–Na2O–BaO silicate glass for SOFC has been studied. The structure of the sealant is stable at high temperatures with leakage rates less than 10−4 sccm∙cm−1, and no crystal except for ZrO2 is found in XRD analysis after heating at 800 °C for 100 h. ZrO2 is distributed in the glass matrix and plays a supporting role in avoiding over-softening at operating temperature. Good compatibility in both oxidizing and reducing atmospheres between the sealant and SUS430 interconnect was proved by SEM at 750 °C for 100 h. A fully coupled 3D Multiphysics button SOFC is constructed for mechanical analyses. The results show that the increase of ZrO2 in the sealant will decrease the stress and displacement in the SOFC. Besides, the width of the sealant also affects the stress value and distribution. The results show that GZ10 is a competitive sealing material compared with other ZrO2-added sealants.  相似文献   

17.
《分离科学与技术》2012,47(3):420-427
In this article, the composite polydimethylsiloxane (PDMS) membranes supported by cellulose-acetate (CA) microfiltration membrane were successfully prepared by adding nano-fumed silica particles modified with a silane coupling reagent, NH2-C3H6-Si(OC2H5)3. The effects of silica content, feed concentration, and feed temperature on the pervaporation performances of the nano-composite PDMS membranes were investigated for recovering ethanol from aqueous solution by pervaporation. It was found that adding the modified silica particles significantly improved the pervaporation performances of the composite membranes. When the silica content in the membrane was 5 wt%, for a 5 wt% ethanol/water mixture at 40°C, the permeation flux of the membrane maintained about 200 g · m?2 · h?1 and separation factor reached the maximum value of 19.  相似文献   

18.
Polyimide (PI) nanocomposites with both enhanced thermal conductivity and dimensional stability were achieved by incorporating glycidyl methacrylate‐grafted graphene oxide (g‐GO) in the PI matrix. The PI/g‐GO nanocomposites exhibited linear enhancement in thermal conductivity when the amount of incorporated g‐GO was less than 10 wt%. With the addition of 10 wt% of g‐GO to PI (PI/g‐GO‐10), the thermal conductivity increased to 0.81 W m?1 K?1 compared to 0.13 W m?1 K?1 for pure PI. Moreover, the PI/g‐GO‐10 composite exhibited a low coefficient of thermal expansion (CTE) of 29 ppm °C?1. The values of CTE and thermal conductivity continuously decreased and increased, respectively, as the g‐GO content increased to 20 wt%. Combined with excellent thermal stability and high mechanical strength, the highly thermally conducting PI/g‐GO‐10 nanocomposite is a potential substrate material for modern flexible printed circuits requiring efficient heat transfer capability.  相似文献   

19.
Novel glass-ceramics of the nominal molar compositions 20Fe2O3·20B2O3·(60-x)V2O5· (xNa2O or xSrO) (where x?=?0 or 10) were prepared by traditional melt technique. Differential thermal analysis (DTA) was implemented to study the thermal behavior of the prepared glasses. Vanadium pentoxide (V2O5), iron vanadate (FeVO4), sodium vanadate (Na3VO4) and strontium vanadate (with different formulae) were crystallized and identified by X-ray diffraction (XRD) analysis under certain conditions of heat-treatment. Further characterization of glass and glass ceramics samples were performed using scanning electron microscope (SEM), density, electrical and dielectric measurements. In conclusion, our study elucidated that the substitution of vanadium by Na+ and Sr2+ ions enhanced the conductivity at 180?°C from 5.11?×?10?4 for unmodified glass to 2.93?×?10?3 and 1.03?×?10?2?S?cm?1 for Na- and Sr-modified glasses.  相似文献   

20.
Five protonic beta and beta″-aluminas; viz hydrated sodium beta-alumina (1,24Na2O·11Al2O3), hydronium beta-alumina (1.24H2O·11Al2O3·2.6H2O), partially dehydrated hydronium beta-alumina (1.24H2O·11Al2O3·1.3H2O), hydrogen beta-alumina (1.24H2O·11Al2O3) and hydronium beta″-alumina (0.84H2O·0.8MgO·5Al2O3·2.8H2O) were examined by broad band nuclear magnetic resonance from ?196°C to 200°C. The spectra of hydronium beta-alumina and hydronium beta″-alumina are consistent with a mixed composition of H2O, H3O+ and H+ species in the conducting plane. Hydrogen beta-alumina and partially dehydrated hydronium beta-alumina appear to contain only relatively isolated (2.6–2.7Å) protons; no evidence of molecular water or hydronium ions is found. Water molecules intercalated into the conduction plane of sodium beta-alumina do not appear to be in rapid motion, even at 167°C, but are relatively stationary. The onset of motional narrowing in hydronium beta″-alumina occurs at ?40°C but not until +30°C in hydronium beta-alumina. This is consistent with the higher conductivity reported for hydronium beta″-alumina, 10?3–10?5 (ohm-cm)?1 at 25°C, in comparison to 10?10–10?11 (ohm-cm)?1 for hydronium beta-alumina at 25°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号