首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are numerous fault diagnosis methods studied for complex chemical process, in which the effective methods for visualization of fault diagnosis are more challenging. In order to visualize the occurrence of the fault clearly, a novel fault diagnosis method which combines self-organizing map (SOM) with correlative component analysis (CCA) is proposed. Based on the sample data, CCA can extract fault classification information as much as possible, and then based on the identified correlative components, SOM can distinguish the various types of states on the output map. Further, the output map can be employed to monitor abnormal states by visualization method of SOM. A case study of the Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The results show that the SOM integrated with CCA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.  相似文献   

2.
Purified terephthalic acid (PTA) is an important chemical raw material. P-xylene (PX) is transformed to terephthalic acid (TA) through oxidation process and TA is refined to produce PTA. The PX oxidation reaction is a complex process involving three-phase reaction of gas, liquid and solid. To monitor the process and to im-prove the product quality, as wel as to visualize the fault type clearly, a fault diagnosis method based on self-organizing map (SOM) and high dimensional feature extraction method, local tangent space alignment (LTSA), is proposed. In this method, LTSA can reduce the dimension and keep the topology information simultaneously, and SOM distinguishes various states on the output map. Monitoring results of PX oxidation reaction process in-dicate that the LTSA–SOM can wel detect and visualize the fault type.  相似文献   

3.
复杂过程的可视化故障诊断方法   总被引:2,自引:2,他引:0       下载免费PDF全文
赵豫红  顾一鸣 《化工学报》2006,57(9):2140-2144
引言 随着自动化水平的提高,现代化的工程控制系统规模日趋大型化、复杂化,一旦系统发生故障会造成人员和财产的巨大损失,迫切需要提高自动化系统的可靠性、可维修性和安全性.人们一直在研究各种新的故障诊断技术和方法,来提高故障诊断的正确率,从而防患于未然.  相似文献   

4.
The aim of this paper is to propose a novel real‐time process monitoring and fault diagnosis method based on the principal component analysis (PCA) and kernel Fisher discriminant analysis (KFDA). There is a need to develop this method in order to overcome the inherent limitations of the current kernel FDA method. The idea of the method is to initially reduce dimensionality using PCA and then to map the score data in the reduced original space to the high‐dimensional feature space via a nonlinear kernel function. Following this, the optimal Fisher feature vector and discriminant vector are extracted to perform process monitoring. If faults occur, the method uses the degree of similarity between the optimal discriminant vector presented and the optimal discriminant vector of the faults in the historical dataset to perform a diagnosis. The proposed method can effectively capture nonlinear relationships in process variables. In comparison with kernel FDA, the PCA plus kernel FDA method is more efficient and has a more rapid response when used to undertake online monitoring and fault diagnosis. In this study, the method is evaluated by applying it to the fluid catalytic cracking unit (FCCU) process. As a consequence, its effectiveness is demonstrated.  相似文献   

5.
Visual process monitoring is important in complex chemical processes. To address the high state separation of industrial data, we propose a new criterion for feature extraction called balanced multiple weighted linear discriminant analysis(BMWLDA). Then, we combine BMWLDA with self-organizing map(SOM) for visual monitoring of industrial operation processes. BMWLDA can extract the discriminative feature vectors from the original industrial data and maximally separate industrial operation states in the space spanned by these discriminative feature vectors. When the discriminative feature vectors are used as the input to SOM, the training result of SOM can differentiate industrial operation states clearly.This function improves the performance of visual monitoring. Continuous stirred tank reactor is used to verify that the class separation performance of BMWLDA is more effective than that of traditional linear discriminant analysis, approximate pairwise accuracy criterion, max–min distance analysis, maximum margin criterion, and local Fisher discriminant analysis. In addition, the method that combines BMWLDA with SOM can effectively perform visual process monitoring in real time.  相似文献   

6.
This work proposes a novel approach for the offline development and online implementation of data-driven process monitoring (PM) using topological preservation techniques, specifically self-organizing maps (SOM). Previous topological preservation PM applications have been restricted due to the lack of monitoring and diagnosis tools. In the proposed approach, the capabilities of SOM are further extended so that all aspects of PM can be performed in a single environment. First for fault detection, using SOM's vector quantization abilities, an SOM-based Gaussian mixture model (GMM) is proposed to define the normal region. For identification, an SOM-based contribution plot is proposed to identify the variables most responsible for the fault. This is done by analyzing the residual of the faulty point and an SOM model of the normal region used in fault detection. The data points are projected on the model by locating the best matching unit (BMU) of the point. Finally, for fault diagnosis a procedure is formulated involving the concept of multiple self-organizing maps (MSOM), creating a map for each fault. This allows the ability to include new faults without directly affecting previously characterized faults. A Tennessee Eastman Process (TEP) application is performed on dynamic faults such as random variations, sticky valves and a slow drift in kinetics. Previous studies of the TEP have considered particular feed-step-change faults. Results indicate an excellent performance when compared to linear and nonlinear distance preservation techniques and standard nonlinear SOM approaches in fault diagnosis and identification.  相似文献   

7.
针对化工过程故障诊断数据存在高维度、故障特征不易区分、自组织映射(self-organizing map,SOM)网络易陷入局部最优等问题,提出了一种基于改进核Fisher判别分析(kernel Fisher discriminant analysis,KFDA)与差分进化算法(differential evolution,DE)优化SOM神经网络相结合的故障诊断方法。该方法首先利用欧氏距离对类间距进行加权处理,以避免因类间距离过大造成投影后的数据存在重叠的问题,使故障数据样本获得较好的投影效果,优化分类性能;然后,利用DE算法对SOM神经网络的权值向量进行动态调整,有效避免了由于“死神经元”的出现陷入局部最优的问题;最后,通过对田纳西-伊斯曼(tennessee-eastman,TE)过程和对二甲苯(paraxylene,PX)歧化工艺过程的故障数据进行诊断测试。结果表明,与传统SOM网络相比,提出的KFDA-DE-SOM算法具有较高的分类诊断精度,可有效应用于化工过程的故障诊断。  相似文献   

8.
基于Fisher判别分析和核回归的质量监控和估计   总被引:1,自引:0,他引:1       下载免费PDF全文
A novel systematic quality monitoring and prediction method based on Fisher discriminant analysis (FDA) and kernel regression is proposed. The FDA method is first used for quality monitoring. If the process is under normal condition, then kernel regression is further used for quality prediction and estimation. If faults have occurred, the contribution plot in the fault feature direction is used for fault diagnosis. The proposed method can effectively detect the fault and has better ability to predict the response variables than principle component regression (PCR) and partial least squares (PLS). Application results to the industrial fluid catalytic cracking unit (FCCU) show the effectiveness of the proposed method.  相似文献   

9.
The collected training data often include both normal and faulty samples for complex chemical processes. However, some monitoring methods, such as partial least squares (PLS), principal component analysis (PCA), independent component analysis (ICA) and Fisher discriminant analysis (FDA), require fault-free data to build the normal operation model. These techniques are applicable after the preliminary step of data clustering is applied. We here propose a novel hyperplane distance neighbor clustering (HDNC) based on the local discriminant analysis (LDA) for chemical process monitoring. First, faulty samples are separated from normal ones using the HDNC method. Then, the optimal subspace for fault detection and classification can be obtained using the LDA approach. The proposed method takes the multimodality within the faulty data into account, and thus improves the capability of process monitoring significantly. The HDNC-LDA monitoring approach is applied to two simulation processes and then compared with the conventional FDA based on the K-nearest neighbor (KNN-FDA) method. The results obtained in two different scenarios demonstrate the superiority of the HDNC-LDA approach in terms of fault detection and classification accuracy.  相似文献   

10.
赵旭  阎威武  邵惠鹤 《化工学报》2007,58(4):951-956
化工过程中大量的生产数据反应了生产过程的内在变化和系统的运行状况,基于数据驱动的统计方法可以有效地对生产过程进行监控。对于复杂的化工和生化过程,其过程变量之间的相关关系往往具有很强的非线性特性,传统的线性统计过程监控方法显得无能为力。本文提出了基于核Fisher判别分析的非线性统计过程监控方法,首先利用非线性核函数将数据从原始空间映射到高维空间,在高维空间中利用线性的Fisher判别分析方法提取数据最优的Fisher特征矢量和判别矢量来实现过程监控与故障诊断,能有效地捕获过程变量之间的非线性关系,通过对流化催化裂化(FCCU)过程的仿真表明该方法的有效性。  相似文献   

11.
基于ICA-SVM的复杂化工过程集成故障诊断方法   总被引:1,自引:1,他引:0       下载免费PDF全文
薄翠梅  乔旭  张广明  张湜  杨海荣 《化工学报》2009,60(9):2259-2264
针对由于复杂操作或多回路控制等因素造成复杂化工过程故障诊断难度加剧问题,提出了一种基于独立成分分析(ICA)和支持向量机(SVM)的集成故障诊断方法。该方法利用快速ICA算法建立正常工况ICA模型,通过监控统计量I2、Ie2、SPE是否超过用核密度估计方法确定相应的置信限检测故障。如检测到故障发生,即用梯度算法计算每一个监控变量对统计量I2、Ie2、SPE的贡献度,根据观察贡献度变化情况初步诊断出可能的故障源,并利用支持向量机多分类算法诊断出初始故障源。利用丁二烯精馏装置的实际工业故障数据验证提出的ICA-SVM集成故障诊断方法的有效性。  相似文献   

12.
Considering the huge number of variables in plant-wide process monitoring and complex relationships (linear, nonlinear, partial correlation, or independence) among these variables, multivariate statistical process monitoring (MSPM) performance may be deteriorated especially by the independent variables. Meanwhile, whether related variables keep high concordance during the variation process is still a question. Under this circumstance, a multi-block technology based on mathematical statistics method, Kullback-Leibler Divergence, is proposed to put the variables having similar statistical characteristics into the same block, and then build principal component analysis (PCA) models in each low-dimensional subspace. Bayesian inference is also employed to combine the monitoring results from each sub-block into the final monitoring statistics. Additionally, a novel fault diagnosis approach is developed for fault identification. The superiority of the proposed method is demonstrated by applications on a simple simulated multivariate process and the Tennessee Eastman benchmark process.  相似文献   

13.
王政  孙锦程  王迎春  姜英  贾小平  王芳 《化工进展》2016,35(5):1344-1352
化工过程系统的大型化和复杂性,仅通过常规方式来描述故障机理越来越受到限制。本文以流程图建模法构建的符号有向图(signed directed graph,SDG)故障模型为基础,将化工过程系统抽象为网络拓扑结构,通过对网络模型的统计特征描述,判断网络的复杂性、小世界性和无标度性,进而以复杂网络中心性理论定量计算网络中各个节点的重要性,分析比较各指标来确定网络中的核心节点,并通过Capocci算法对网络进行社团结构的定量划分,最后以网络中的核心节点确定化工过程中易引起安全事故的关键变量,并用社团划分的结果绘制出化工故障诊断模型的关键路径,确定重点监测部位。案例应用结果表明:该方法可行,为化工过程系统中故障节点和监测提供了新的解决思路,丰富了化工过程故障诊断和预防控制的相关理论。  相似文献   

14.
复杂工业过程具有长流程、系统层级多、故障潜在分布空间范围较广的特点,是当前故障诊断领域的热门研究方向。首先,对主流故障诊断技术进行了分类和概述;其次,采用定量与定性相结合思路,提出了面向系统层级的复杂工业过程全息故障诊断框架,为复杂工业全流程的过程监测提供一整套技术和解决方案。相比于目前的故障诊断方法,该框架不仅包括故障检测和故障辨识,还包括故障根源诊断、故障传播路径识别、故障的定量诊断与评估,可有效解决复杂工业过程系统的综合故障诊断问题,实用性强,能够有效地减少或避免故障发生、保证产品的质量、提高企业的生产效率与生产安全;最后对故障诊断技术的发展趋势和亟待解决的问题进行了展望。  相似文献   

15.
Multivariate statistical process monitoring methods are often used in chemical process fault diagnosis. In this article, (I) the cycle temporal algorithm (CTA) combined with the dynamic kernel principal component analysis (DKPCA) and the multiway dynamic kernel principal component analysis (MDKPCA) fault detection algorithms are proposed, which are used for continuous and batch process fault detections, respectively. In addition, (II) a fault variable identification model based on reconstructed-based contribution (RBC) model that paves the way for determining the cause of the fault are proposed. The proposed fault diagnosis model was applied to Tennessee Eastman (TE) process and penicillin fermentation process for fault diagnosis. And compare with other fault diagnosis methods. The results show that the proposed method has better detection effects than other methods. Finally, the reconstruction-based contribution (RBC) model method is used to accurately locate the root cause of the fault and determine the fault path.  相似文献   

16.
Batch process performance monitoring has been achieved primarily using process measurements with the extracted information being associated with the physical parameters of the process. With increasing attention now being paid to the application of on‐line real‐time process analytics through spectrometry, together with the FDA Process Analytical Technologies (PAT) initiative, the use of spectroscopic information for enhanced monitoring of reactions is gaining impetus. The harmonious integration of process data and spectroscopic data then becomes a major challenge. By integrating the process and spectroscopic measurements for multivariate statistical data modelling and analysis, it is conjectured that improved process understanding and fault diagnosis can be achieved. An investigation into combining process and spectral data using multiblock and multiresolution analysis is proposed and the results from the analysis of experimental data from two industrial application studies are presented to demonstrate the improvements achievable in terms of process performance monitoring and fault diagnosis.  相似文献   

17.
王晓慧  王延江  邓晓刚  张政 《化工学报》2021,72(11):5707-5716
传统支持向量数据描述(SVDD)方法本质上采用浅层学习框架,难以有效监控非线性工业过程的复杂故障。针对此问题,提出一种基于加权深度支持向量数据描述(WDSVDD)的故障检测方法。该方法一方面在深度学习框架下重新定义SVDD优化目标函数,构建基于深度特征的深度SVDD监控模型(DSVDD),并利用核密度估计法计算监控指标的统计控制限;另一方面,考虑到深度特征的故障敏感度差异特性,在DSVDD监控模型中设计特征加权层,分别从静态和动态信息分析角度给出权重因子的计算方法,利用权重因子突出故障敏感特征的影响以提高故障检测率。应用于一个典型化工过程的测试结果表明,所研究的方法能够比传统SVDD方法更有效地监控过程中复杂故障的发生。  相似文献   

18.
Complex chemical process is often corrupted with various types of faults and the fault‐free training data may not be available to build the normal operation model. Therefore, the supervised monitoring methods such as principal component analysis (PCA), partial least squares (PLS), and independent component analysis (ICA) are not applicable in such situations. On the other hand, the traditional unsupervised algorithms like Fisher discriminant analysis (FDA) may not take into account the multimodality within the abnormal data and thus their capability of fault detection and classification can be significantly degraded. In this study, a novel localized Fisher discriminant analysis (LFDA) based process monitoring approach is proposed to monitor the processes containing multiple types of steady‐state or dynamic faults. The stationary testing and Gaussian mixture model are integrated with LFDA to remove any nonstationarity and isolate the normal and multiple faulty clusters during the preprocessing steps. Then the localized between‐class and within‐class scatter mattress are computed for the generalized eigenvalue decomposition to extract the localized Fisher discriminant directions that can not only separate the normal and faulty data with maximized margin but also preserve the multimodality within the multiple faulty clusters. In this way, different types of process faults can be well classified using the discriminant function index. The proposed LFDA monitoring approach is applied to the Tennessee Eastman process and compared with the traditional FDA method. The monitoring results in three different test scenarios demonstrate the superiority of the LFDA approach in detecting and classifying multiple types of faults with high accuracy and sensitivity. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

19.
A large amount of information is frequently encountered when characterizing the sample model in chemical process. A fault diagnosis method based on dynamic modeling of feature engineering is proposed to effectively remove the nonlinear correlation redundancy of chemical process in this paper. From the whole process point of view, the method makes use of the characteristic of mutual information to select the optimal variable subset. It extracts the correlation among variables in the whitening process without limiting to only linear correlations. Further, PCA (Principal Component Analysis) dimension reduction is used to extract feature subset before fault diagnosis. The application results of the TE (Tennessee Eastman) simulation process show that the dynamic modeling process of MIFE (Mutual Information Feature Engineering) can accurately extract the nonlinear correlation relationship among process variables and can effectively reduce the dimension of feature detection in process monitoring.  相似文献   

20.
A new support vector clustering (SVC)‐based probabilistic approach is developed for unsupervised chemical process monitoring and fault classification in this article. The spherical centers and radii of different clusters corresponding to normal and various kinds of faulty operations are estimated in the kernel feature space. Then the geometric distance of the monitored samples to different cluster centers and boundary support vectors are computed so that the distance–ratio–based probabilistic‐like index can be further defined. Thus, the most probable clusters can be assigned to the monitored samples for fault detection and classification. The proposed SVC monitoring approach is applied to two test scenarios in the Tennessee Eastman Chemical process and its results are compared to those of the conventional K‐nearest neighbor Fisher discriminant analysis (KNN‐FDA) and K‐nearest neighbor support vector machine (KNN‐SVM) methods. The result comparison demonstrates the superiority of the SVC‐based probabilistic approach over the traditional KNN‐FDA and KNN‐SVM methods in terms of fault detection and classification accuracies. © 2012 American Institute of Chemical Engineers AIChE J, 59: 407–419, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号