首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unquenched and quenched ceramics of 0.85Na0.5Bi0.5TiO3-0.11K0.5Bi0.5TiO3-0.04BaTiO3 have been prepared, and their crystal structure, temperature-dependent ferro-/piezoelectric properties and domain structure have been comparatively investigated. It is shown that quenching process can significantly improve the ferroelectric-relaxor transition temperature (TF-R), which is 130 °C for unquenched ceramics and 198 °C for quenched one. As the result, the thermal stability of ferro-/piezoelectric properties is highly enhanced. These observations are mainly attributed to the quenching induced stable rhombohedral ferroelectric phase and the defect altered domain evolution. This work may deepen the understanding of the effect of quenching on crystal structure, domain structure and their contributions to thermal stability of NBT-based ceramics.  相似文献   

2.
The phase structure, dielectric, ferroelectric, and piezoelectric properties of (1?2x)BiScO3xPbTiO3xPbMg1/3Nb2/3O3 ceramics (x = 0.30‐0.46) were studied. It was found that an increase in x leads to a structural phase transition between the rhombohedral and tetragonal phase via an intermediate monoclinic phase and to a crossover from the nonergodic relaxor state to the ferroelectric one. It was proposed that at x > 0.42 the phase transition changes from second to first order. The assumption about the existence of a tricritical point on the phase diagram at x ≈ 0.42 with the enhanced dielectric response has been made. The observed structure‐property relationships of the studied solid solutions are discussed. It is shown that the solid solutions with x = 0.42 are characterized by the high piezoelectric parameters (d33 = 509 pC/N, d31 = ?178 pC/N, dh = 153 pC/N), which makes possible their applications in sonar equipment.  相似文献   

3.
The influence of temperature on the variation in dielectric nonlinearity and domain structures was investigated for the (Ba0.95Ca0.05)(Ti0.83Zr0.17)O3 (BCTZ)‐based multilayer ceramic capacitor that shows a diffuse phase transition. Whereas the dielectric constant (εr) vs temperature shows a broadened maximum peak at low ac driving field, such a peaked behavior disappears at high ac driving field due to an abrupt increase in dielectric constants at low temperatures. Such low temperature effect can be associated with an enhanced spontaneous polarization (PS) and a significant increase in irreversible domain wall contribution to polarization representing normal ferroelectric behavior based on the Preisach analysis. No ferroelectric domain contrasts were observed at room temperature through transmission electron microscopy. However, they appeared and became more and more distinct with the decrease in temperature, and the crystal structure also changed from cubic to rhombohedral with increased lattice constants. It demonstrates that the dramatic increase in the dielectric nonlinearity with decreasing temperatures originates from the corresponding changes in domain and crystal structure, where the polar‐micro‐regions of BCTZ at room temperature change to normal ferroelectric domains at low temperatures.  相似文献   

4.
《Ceramics International》2015,41(8):9265-9275
Calcium (Ca)-doped bismuth ferrite (BiFeO3) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), polarization and magnetic measurements. Structural studies by XRD and Rietveld refinement reveal the co-existence of distorted rhombohedral and tetragonal phases in the highest doped BiFeO3 (BFO) where enhanced ferroelectric and magnetic properties are produced by internal strain. A high coercive field in the hysteresis loop is observed for the BiFeO3 film. Fatigue and retention free characteristics are improved in the highest Ca-doped sample due to changes in the crystal structure of BFO for a primitive cubic perovskite lattice with four-fold symmetry and a large tetragonal distortion within the crystal domain.  相似文献   

5.
Na/Bi stoichiometry plays crucial role in determining various properties of sodium bismuth titanate-based system. In this work, we have synthesised lead free (Na0.5Bi0.5)1+x TiO3 (x?=?0, 0.02 and 0.05) ceramics by sol-gel method and systematically presented structural, dielectric and ferroelectric properties at different sintering temperature. Single phase perovskite structure with rhombohedral symmetry (R3c) is obtained for all compositions from low (850°C) to maximum (1150°C) sintering temperature. The shifting of x-ray diffraction peaks and characteristic perovskite metal-oxide vibrational band (~627?cm?1) in Fourier Transform Infra-red spectra suggests compression or expansion of crystal lattice with Na/Bi non-stoichiometry. Excess of Na/Bi comprises dense crystal growth as compared to pure Na0.5Bi0.5TiO3 composition suggesting compensation of volatile elements loss during heat treatment whose impact has also been observed in dielectric as well as ferroelectric properties. It is observed that Na0.51Bi0.51TiO3 sample with x?=?0.02 exhibits better structural, dielectric and ferroelectric properties in whole range of sintering temperature.  相似文献   

6.
Morphotropic Phase Boundary in the Pb(Zn1/3Nb2/3O3)-BaTiO3-PbTiO3 System   总被引:1,自引:1,他引:0  
The morphotropic phase boundary (MPB) in the relaxor ferroelectric system Pb(Zn1/3Nb2/3O3)-BaTiO3-PbTiO3 (PZN-BT-PT) with 15 mol% BT was investigated through dielectric permittivity and high-temperature X-ray diffraction measurements. It was revealed that MPB is a broad composition region extending from 12 to 18 mol% PT, within which the temperatures of the permittivity maximum are close to the ending temperatures for the phase transformation from coexisting rhombohedral and tetragonal phases to cubic phase on heating. When the specimen is cooled, the starting temperatures for the rhombohedral-to-tetragonal phase transition increase with increasing PT content. The large thermal hysteresis observed by X-ray diffraction is caused by the phase transformation between rhombohedral and tetragonal phases. On cooling, the MPB curves toward the PT-rich side, so that ceramics within this composition range undergoe successive phase transitions from cubic to rhombohedral and from rhombohedral to tetragonal phase. The diffuseness of the paraelectric-to-ferroelectric phase transition is remarkably decreased by the addition of PT. The enhanced dielectric permittivity peak values for the MPB compositions are correlated with the reduced lattice distortion and phase coexistence.  相似文献   

7.
The relationship between the piezoelectric properties and the structure/microstructure for 0.05Bi(Mg2/3Nb1/3)O3‐(0.95‐x)BaTiO3xBiFeO3 (BBFT,= 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics has been investigated. Scanning electron microscopy revealed a homogeneous microstructure for < 0.75 but there was evidence of a core‐shell cation distribution for = 0.75 which could be suppressed in part through quenching from the sintering temperature. X‐ray diffraction (XRD) suggested a gradual structural transition from pseudocubic to rhombohedral for 0.63 < < 0.70, characterized by the coexistence of phases. The temperature dependence of relative permittivity, polarization‐electric field hysteresis loops, bipolar strain‐electric field curves revealed that BBFT transformed from relaxor‐like to ferroelectric behavior with an increase in x, consistent with changes in the phase assemblage and domain structure. The largest strain was 0.41% for x = 0.63 at 10 kV/mm. The largest effective piezoelectric coefficient (d33*) was 544 pm/V for = 0.63 at 5 kV/mm but the largest Berlincourt d33 (148 pC/N) was obtained for x = 0.70. We propose that d33* is optimized at the point of crossover from relaxor to ferroelectric which facilitates a macroscopic field induced transition to a ferroelectric state but that d33 is optimized in the ferroelectric, rhombohedral phase. Unipolar strain was measured as a function of temperature for = 0.63 with strains of 0.30% achieved at 175°C, accompanied by a significant decrease in hysteresis with respect to room temperature measurements. The potential for BBFT compositions to be used as high strain actuators is demonstrated by the fabrication of a prototype multilayer which achieved 3 μm displacement at 150°C.  相似文献   

8.
Effects of quenching process on dielectric, ferroelectric, and piezoelectric properties of 0.71BiFeO3?0.29BaTiO3 ceramics with Mn modification (BF–BT?xmol%Mn) were investigated. The dielectric, ferroelectric, and piezoelectric properties of BF–BT?xmol%Mn were improved by quenching, especially to the BF–BT?0.3 mol%Mn ceramics. The dielectric loss tanδ of quenched BF–BT?0.3 mol%Mn ceramics was only 0.28 at 500°C, which was half of the slow cooling one. Meanwhile, the remnant polarization Pr of quenched BF–BT?0.3 mol%Mn ceramics increased to 21 μC/cm2. It was notable that the piezoelectric constant d33 of quenched BF–BT?0.3 mol%Mn ceramics reached up to 191 pC/N, while the TC was 530°C, showing excellent compatible properties. The BF–BT?xmol%Mn system ceramics showed to obey the Rayleigh law within suitable field regions. The Rayleigh law results indicated that the extrinsic contributions to the dielectric and piezoelectric responses of quenched BF–BT?xmol%Mn ceramics were larger than the unquenched ceramics. These results presented that the quenched BF–BT?xmol%Mn ceramics were promising candidates for high‐temperature piezoelectric devices.  相似文献   

9.
The structures and functional properties of Na0.5Bi0.5TiO3xKNbO3 (NBT‐xKN) solid solutions, with x in the range from 0.01 to 0.09, were investigated using a combination of high‐resolution synchrotron X‐ray powder diffraction (SXPD) and ferroelectric property measurements. For low KN contents, an irreversible transformation from cubic to rhombohedral phases was observed after the application of a high electric field, indicating that the polar nanoregions (PNRs) in the unpoled state can be transformed into metastable long‐range ordered ferroelectric domains in the poled state. In contrast, the near‐cubic phase of the unpoled ceramics was found to be remarkably stable and was retained on cooling to a temperature of ?175°C. Upon heating, the field‐induced metastable ferroelectric rhombohedral phase transformed back to the nanopolar cubic state at the structural transformation temperature, TST, which was determined as approximately 225°C and 125°C for KN contents of 3% and 5% respectively. For the field‐induced rhombohedral phase in the poled specimens, the pseudo‐cubic lattice parameter, ap, exhibited an anomalous reduction while the inter‐axial angle increased towards a value of 90° on heating, resulting in an overall increase in volume. The observed structural changes were correlated with the results of temperature‐dependent dielectric, ferroelectric and depolarization measurements, enabling the construction of a phase diagram to define the stable regions of the different ferroelectric phases as a function of composition and temperature.  相似文献   

10.
Lead-free piezoelectric ceramics, (1?x)Na0.5Bi0.5TiO3-xKNbO3 (NBT-xKN), with x?=?0.02–0.08 were fabricated by solid-state reaction and sintering. The crystal structures and dielectric properties were measured for different KN contents. All compositions in the unpoled, as-sintered state were found to be single-phase pseudo-cubic. However, typical ferroelectric behaviour, with well-saturated polarisation-electric field hysteresis loops, was observed for certain compositions at high electric field levels. It is shown using high-energy synchrotron X-ray diffraction that the application of the electric field induced an irreversible structural transformation from the nano-polar pseudo-cubic phase to a ferroelectric rhombohedral phase. The changes in lattice elastic strain and crystallographic texture of a poled NBT-0.02KN specimen as a function of the grain orientation, ψ, conform well to those expected for a conventional rhombohedrally distorted perovskite ferroelectric ceramic. The dielectric permittivity-temperature relationships for all compositions exhibit two transition temperatures and a frequency-dependent behaviour that is typical of a relaxor ferroelectric. The transition temperatures and grain size decrease with the increasing KN content.  相似文献   

11.
Quenching relaxor ferroelectric 0.94(Na1/2Bi1/2)TiO3–0.06BaTiO3 (NBT-6BT) enhances the depolarization temperature (Td), linked to the stabilization of ferroelectric order. The thermal evolution of the domain structure and phase assemblage provides insights about the onset of ferroelectric order in quenched materials. Unpoled furnace cooled and quenched NBT-6BT ceramics were studied using in situ temperature-dependent transmission electron microscopy. The rhombohedral to tetragonal structural transition in furnace cooled and quenched samples occurs in a comparable temperature range of 120°C–220°C. While the tetragonal phase is characterized by polar nanoregions (PNRs) and no domain contrast in the furnace cooled state, the quenched composition exhibits an increased fraction of lamellar domains, which are partially stable up to 300°C, thus benefiting the delayed depolarization. This is further corroborated by the dielectric data indicating earlier freezing of PNR dynamics in the quenched state. The reversibility of the phase transition is demonstrated by successive cooling, where quenched NBT-6BT features an increased grainy PNR contrast after the experiment, followed by a kinetically delayed coalescence of PNRs back into lamellar domains. This demonstrates that the stabilized ferroelectric state upon quenching is associated with the conversion of polar units on the nanometer scale into long-range domain structures.  相似文献   

12.
The pure and Mn-doped K0.5Na0.5NbO3 (KNN) films were deposited using solution-gelation method. The crystal structure, ferroelectric properties, spectral response and J-V performance of photovoltaic effect were systematically investigated. Both the ferroelectric and leakage properties are obviously enhanced for Mn-doped KNN films. A fascinating phenomenon is observed that the ferroelectric photovoltaic effect is enhanced in Mn-doped KNN films, which is originated from the improved ferroelectric polarization and narrower band gap. The transition element Nb partially substituted by Mn results in the lattice distortion and further destroys the symmetry space structure, which enhances ferroelectric polarization. And the narrower band gap effectively decreases the internal potential barrier to separate the carriers. This work gives a clear relationship between the lattice distortion, ferroelectric and photovoltaic response. It is certain that lead-free transparent K0.5Na0.5NbO3 films can be potentially applied in viable ferroelectric based solar cells.  相似文献   

13.
Multiferroic ceramics were prepared and characterized in (1?x)BiFeO3x(0.5CaTiO3–0.5SmFeO3) system by a standard solid‐state reaction process. The structure evolution was investigated by X‐ray diffraction and Raman spectrum analyses. The refinement results confirmed the different phase assemblages with varying amounts of polar rhombohedral R3c and nonpolar orthorhombic Pbnm as a function of the substitution content. In the compositions range of 0.2≤x≤0.5, polar R3c and nonpolar Pbnm coexisted, which was referred to polar‐to‐nonpolar morphotropic phase boundary (MPB). According to the dielectric and DSC analysis results, the ceramics with x≤0.2 changed to diffused ferroelectric, and the ferroelectric properties were enhanced significantly. Two dielectric relaxations were detected in the temperature range of 200‐300 K and 500‐700 K, respectively. The high‐temperature dielectric relaxation was attributed to the grain‐boundary effects. While the low temperature dielectric relaxation obtained in the samples with x=0.3‐0.5 was related to the charge transfer between Fe2+ and Fe3+. The magnetic hysteresis loops measured at different temperature indicated the enhanced magnetic properties in the present ceramics, which could be attributed to the suppressed cycloidal spin magnetic structure by Ti ions. In addition, the rare‐earth Sm spin moments might also affect the magnetic properties at relatively lower temperature.  相似文献   

14.
《Ceramics International》2022,48(3):3869-3874
Lead-based relaxor ferroelectric crystals, such as Pb(Mg1/3Nb2/3)O3-PbTiO3, are promising for functional applications due to their outstanding ferroelectric properties. Revealing ferroelectric domain structure and phase distribution at the nanoscale are important to understand the basic theory of ferroelectricity and promote their practical applications. In this study, the ferroelectric domain structure and atomic-scale phase distribution in a Pb(Mg1/3Nb2/3)O3 - 35 at.% PbTiO3 single crystal in the region of morphotropic phase boundary are systematically investigated by a combination of optical microscopy, scanning electron microscopy, and aberration-corrected transmission electron microscopy. It is found that 90° and 180° coarse domains are formed simultaneously in the ferroelectric single crystal. Moreover, there are tweed-like nano-domains formed inside each coarse single domain. Through careful investigations of distribution of stress and tetragonality, it is revealed that the tweed-like nano-domains are composed of nano-sized rhombohedral (R), monoclinic (M), and tetragonal (T) phases. The nano-scale T, M, R phases have the best, moderate, and lowest ferroelectricity, respectively.  相似文献   

15.
Lead-free bismuth sodium titanate and related compounds are of great interest as promising candidates for piezoelectric applications. However, the full understanding of this family of materials is still a challenge partly because of their structural complexity and different behaviors with or without the application of an external electric field. Here, piezoresponse force microscopy is used to gain insight into the mesoscopic-scale domain structure of the morphotropic phase boundary (MPB) composition of (1-x)Bi0.5Na0.5TiO3-xBaTiO3 solid solution at = 0.06 (abbreviated as BNT-6BT). The evolution of the domains with the changes of the electric field and temperature has been thoroughly examined in conjunction with the crystal structure analysis and dielectric studies. It is found that ferroelectric domains with size of hundreds of nanometers are embedded in a relaxor state without visible domains on a mesoscopic scale, which are considered to contribute to the tetragonal and cubic phases in the material, respectively. Temperature-independent domain configuration is observed in the unpoled sample from room temperature to 200°C. While, temperature-dependent domain configuration is observed in the poled sample. The homogenously poled state breaks into the mixed domain configuration containing polydomain structure and invisible state around the so-called depoling temperature. The structural changes on different length scales are also discussed. This work provides an in-depth understanding of the structural and domain changes under an electric field and the temperature-dependent domain evolution in both unpoled and poled states in the BNT-BT solid solution of the MPB composition.  相似文献   

16.
Blacklight sintering has been used for rapid densification of ceramics. Compared to other methods, neither electrodes nor complex sample holders and dies are required, resulting in an effective technique for energy-efficient sintering. Still, the question remains whether excellent functional properties can be obtained by this method. Therefore, blacklight-sintered ferroelectric BaTiO3 was investigated. Gradient-free microstructures and phase purity could be reached. Enhanced electrical conductivity was determined, indicating changes in defect chemistry and, most likely, an increase in oxygen vacancy concentration. Furthermore, measurements of ferroelectric properties confirmed leaky ferroelectric behavior, with migration and pinning of oxygen vacancies affecting the polarization loops. An additional short annealing step in an oxygen-rich atmosphere led to di/ferroelectric parameters equivalent to those of a conventionally sintered reference sample. Thus, the fabrication of ferroelectric ceramics by blacklight sintering is possible if the quenching effect caused by the freeze-in of defects during rapid cooling is considered.  相似文献   

17.
Pr3+‐doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)TiO3 ceramics were prepared by a solid‐state reaction method. The effects of doping concentration, sintering temperature, and ferroelectric remanent polarization on photoluminescence (PL) properties of samples were systematically investigated. The PL spectra of samples exhibit strong green and red emissions with a broad blue excitation band ranging from 430 to 500 nm, in a good agreement with all commercial blue LEDs emission wavelength. Except for the concentration and temperature PL quenching, the polarization‐induced PL quenching was obviously observed, and the degree of PL quenching changes with Pr3+ concentrations, the origin of the change is well interpreted by field‐induced structural phase transitions between rhombohedral (R3m) and tetragonal (P4mm) for BCZT: xPr ceramics near the morphotropic phase boundary.  相似文献   

18.
Lead-free ferroelectric Pr3+-doped (1-x)Na0.5Bi0.5TiO3-xSrTiO3 (x?=?0–0.5) (hereafter abbreviated as Pr-NBT-xSTO) thin films were prepared on Pt/Ti/SiO2/Si and fused silica substrates by a chemical solution deposition method combined with a rapid thermal annealing process at 700?°C, and their structural phase transition, dielectric, ferroelectric, and photoluminescent properties were investigated as a function of STO content. Raman analysis shows that with increasing STO content, the phase structures evolve from rhombohedral phase to coexistence of rhombohedral and tetragonal phases (i.e. morphotropic phase boundary), and then to tetragonal phase. The structural phase transition behavior has been well confirmed by temperature- and frequency- dependent dielectric measurements. Meanwhile, the variation in photoluminescence intensity of Pr3+ ions with different STO content in the NBT-xSTO thin films also indicates that there exists a clear structural phase transition when the film composition is close to the morphotropic phase boundary. Superior dielectric and ferroelectric properties are obtained in the Pr-NBT-0.24STO thin films due to the formation of morphotropic phase boundary. Our study suggests that Pr-NBT-xSTO thin films be promising multifunctional materials for optoelectronic device applications.  相似文献   

19.
In the process of exploring ferroelectric semiconductors, a new system of (1−x) KNbO3xSrFeO3−δ (x = 0.00-0.20) was successfully synthesized via solid-state reaction. The crystal structures, ferroelectric, dielectric, optical, and electrical properties were systematically characterized. The orthorhombic phase with Amm2 space group is detected in all the ceramics. In addition, the orthorhombic and tetragonal phases coexist in 0.80KNbO3-0.20SrFeO3-δ ceramic. The decrease in oxygen octahedron distortion induces a weak ferroelectric polarization. The existence of long-range ferroelectric polarization order in all the ceramics is verified and the bandgap of the ceramics can be tuned to ~2.18 eV. The improved short-circuit photocurrent density (Jsc) and open-circuit voltage (Voc) of the poled 0.95KNbO3-0.05SrFeO3−δ ceramic at 30 kV/cm are ~6.90 nA/cm2 and 0.04 V, respectively. The activation energies for electrical conductivity of the grains and grain boundaries from 0.90KN–0.10SF ceramic are 0.67 and 0.77 eV, respectively, which indicate the doubly ionized oxygen vacancies. This work provides a new way to tune the optical bandgap/ferroelectric properties of KNbO3-based ceramics for potential application in ferroelectric photovoltaic and energy fields.  相似文献   

20.
Lead-based ferroelectric materials are extensively employed in industrial applications and everyday life due to their excellent ferroelectric and piezoelectric performance. Pb(Ni1/3Nb2/3)O3-PbTiO3 (PNN-PT) is a typical binary relaxor ferroelectric system, whose refined structure and piezoelectric properties have not been systematically investigated. In this study, evolution of electric field-based crystal structure and variation of ferroelectric, piezoelectric, as well as dielectric properties with composition and temperature of (1 − x)PNN-xPT (0.32 ≤ x ≤ 0.36) ceramics were studied in full detail. The optimal performance is obtained at 0.66PNN-0.34PT with maximum piezoelectric coefficient d33 of 560 pC/N and large dielectric constant of 28 684. In situ high-energy synchrotron diffraction was employed to determine structural origins of enhanced properties of 0.66PNN-0.34PT. Interestingly, crystal structure of poled 0.66PNN-0.34PT ceramic is determined to be single monoclinic phase. Furthermore, both its lattice parameters and volume variation present butterfly shape under electric field. It is demonstrated that macroscopic strain of 0.66PNN-0.34PT stems mainly from intrinsic structure. The present study provides evidence for the relationship between microstructure and macroscopic properties, which is beneficial to the design of new materials with piezoelectric properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号