首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Na-ZSM-5 membranes were synthesized by secondary growth on the outer surface of stainless steel porous tubes. The membranes were ion-exchanged with Cs+, Ba2+ and Sr2+ to investigate their effect upon the separation of p-xylene from m-xylene and o-xylene. The permeation through the membranes was measured between 150 and 400 °C using each xylene isomer separately and a ternary mixture. All the membranes were selective to p-xylene in the temperature range studied. N2 and xylene permeation measurements together with SEM observations were used to determine whether or not cracks and/or pinholes developed after exposure to the xylene isomers at high temperature (400 °C). Neither pore blockage nor extra-zeolitic pores developed after the ion exchange procedure and subsequent calcination. Furthermore, duplicate synthesized membranes of each cation form had similar separation factors and permeances. The duplicate values differ much less than the measurement error. The p-xylene permeation flux decreased in the order: Na-ZSM-5 > Ba-ZSM-5 > Sr-ZSM-5  Cs-ZSM-5 while the permeation flux of the m- and o-xylene decreased in the order Na-ZSM-5 > Sr-ZSM-5 > Ba-ZSM-5 > Cs-ZSM-5. The membrane that exhibited the best performance was Ba-ZSM-5, with a maximum p/o separation factor of 8.4 and a p-xylene permeance of 0.54 × 10−7 mol s−1 m−2 Pa−1 at 400 °C.  相似文献   

2.
The oxidation of benzene to phenol has been successfully carried out in air over Cu-ZSM-5 at moderate temperatures. Several parameters such as Cu loading, calcination temperature and co-exchanged metal ions influence the nature of the catalyst. At low Cu loadings, the catalyst is more selective to phenol while at high Cu loadings CO2 is the major product. In situ H2-TPR XAFS studies reveal that at low Cu loadings, Cu exists as isolated pentacoordinated ions, with 4 equatorial oxygens at 1.94 Å and a more distant axial oxygen at 2.34 Å. At higher loadings, monomeric as well as dimeric Cu species exist, with a Cu–Cu distance of 2.92 Å. This suggests that the isolated Cu sites are the active sites responsible for phenol formation. When the catalyst was calcined at 450 °C, the activity peaked in the first hour and then slowly deactivated, but when the calcination temperature was increased to 850 °C, the activity slowly increased until it reached a plateau. Analysis of the XANES region during in situ H2-TPR shows that at lower calcination temperatures two reduction peaks are present, corresponding to Cu2+ → Cu+ and Cu+ → Cu0. At high calcination temperatures, only a small fraction of the Cu undergoes the two-step reduction and most of the Cu remains in the +2 state. Slow deactivation of the catalyst calcined at 450 °C is due to migration of the Cu ions to inaccessible sites in the zeolite; at high calcination temperatures the Cu is tightly bound to the framework and is unable to migrate. EXAFS analysis of the sample calcined at 850 °C reveals two Cu–Si(Al) scattering paths at 2.83 Å. Doping the catalyst with other metals, in particular Ag and Pd, further improves the activity and selectivity of the reaction. The addition of water to the reaction increases the selectivity of the reaction by displacing the product from the active site.  相似文献   

3.
A refractory material was elaborated from kaolin extracted from the region of Djebel Debbagh (Algeria). Kaolin grog was obtained by calcination at a temperature of 1350 °C during 1 h. It was used as aggregates with granulometric distribution composed of fine fraction (mean grain size: 100–250 μm) and coarse fraction (mean grain size: 1000–2500 μm). Crude kaolin (size < 75 μm) was also used as a binder with an amount representing 15% of the dry material. After a 9.28% moistening and a rotting of 1 day, cylindrical samples were shaped by uniaxial pressure at 80 MPa. The samples were submitted to a natural drying during 24 h, a stoving at 100 °C and a calcination at 600 °C during 1 h. They were fired at high temperatures between 1250 and 1450 °C.

An X-ray diffraction (XRD) analysis showed that the refractory samples are composed of mullite and silica. Silica is a mixture of a vitreous phase and cristobalite at 1300, 1350 and 1400 °C and becomes completely amorphous when the samples are fired at higher temperature (1450 °C). The sample porosity is about 30%. The mechanical tests carried out as a function of temperature revealed different behaviours of the material. From the ambient up to 600 °C, the refractory behaviour is pseudo-plastic caused by micro-cracking. Between 700 and 900 °C, the samples become more rigid. At 1000 °C, the material exhibits a visco-plastic behaviour. The amorphous phase governs the sample properties variation with temperature increasing. Its content varies between 28% and 34% according to the firing temperature. Thermal shock tests realized in water showed that the refractory samples present good thermal shock resistance.  相似文献   


4.
The physicochemical, surface and catalytic properties of 10 and 20 wt% CuO, NiO or (CuO–NiO) supported on cordierite (commercial grade) calcined at 350–700 °C were investigated using XRD, EDX, nitrogen adsorption at −196 °C and CO oxidation by O2 at 220–280 °C. The results obtained revealed that the employed cordierite preheated at 350–700 °C was well-crystallized magnesium aluminum silicate (Mg2Al4Si5O18). Loading of 20 wt% CuO or NiO on the cordierite surface followed by calcination at 350 °C led to dissolution of a limited amount of both CuO and NiO in the cordierite lattice. The portions of CuO and NiO dissolved increased upon increasing the calcination temperature. Treating a cordierite sample with 20 wt% (CuO–NiO) followed by heating at 350 °C led to solid–solid interaction between some of the oxides present yielding nickel cuprate. The formation of NiCuO2 was stimulated by increasing the calcination temperature above 350 °C. However, raising the temperature up to ≥550 °C led to distortion of cuprate phase. The chemical affinity towards the formation of NiCuO2 acted as a driving force for migration of some of copper and nickel oxides from the bulk of the solid towards their surface by heating at 500–700 °C. The SBET of cordierite increased several times by treating with small amounts of NiO, CuO or their binary mixtures. The increase was, however, less pronounced upon treating the cordierite support with CuO–NiO. The catalytic activity of the cordierite increased progressively by increasing the amount of oxide(s) added. The mixed oxides system supported on cordierite and calcined at 450–700 °C exhibited the highest catalytic activity due to formation of the nickel cuprate phase. However, the catalytic activity of the mixed oxides system reached a maximum limit upon heating at 500 °C then decreased upon heating at temperature above this limit due to the deformation of the nickel cuprate phase.  相似文献   

5.
Ferric hydroxide supported Au catalysts prepared with co-precipitation method at room temperature without any heat treatment hereafter exhibited high catalytic activity and selectivity for CO oxidation in air and CO selective oxidation in the presence of H2. With calcination temperature rising, both activity and selectivity decreased. X-ray Photoelectron Spectra (XPS) indicated that Au existed as Au0 and Au+ in the catalyst without heat treatment and even after being calcined at 200 °C, while after being calcined at 400 °C, Au existed as Au0 completely. X-ray Diffraction (XRD) and High Resolution Transmission Electron Microscopic (HRTEM) investigations indicated that both the supports and Au species were highly dispersed as nano or sub-nano particles even after being calcined at 200 °C, but after being calcined at 400 °C the supports transformed to crystal Fe2O3 with typical diameter of 30 nm and Au species aggregated to nano-particles with typical diameter of 2–4 nm. HRTEM investigations also suggested that the supports calcined at 200 °C were composed of amorphous ferric hydroxide and crystal ferric oxide. Results of computer simulation (CS) showed that O2 was adsorbed on Au crystal cell and then were activated, which should be the key factor for the subsequent reaction. It also suggested that O2 species were more easily adsorbed on Au+ than on Au0, indicating that higher positive charge of the Au species possessed the higher activity for CO oxidation.  相似文献   

6.
Ce1−xZrxO2 (x=0–0.84) solid solutions prepared by co-precipitation were characterised after calcination at 700 or 900°C, and after hydrothermal ageing at 1000 or 1200°C. The solid solutions were formed at 700°C, and crystallise as cubic or tetragonal phases depending on their compositions. Despite the rather high surface areas obtained after calcination at 700°C, the sintering is important at 900°C, and tremendous after hydrothermal ageing at 1000°C. For all compositions between 16 and 83 mol% ceria, complete de-mixing of the solid solutions into two phases was observed after ageing at 1200°C: one Zr-rich, tetragonal phase, and one Ce-rich, cubic phase. XPS and ISS measurements show that the phase separation takes place with surface enrichment in Zr, the Zr-rich phase being formed at the periphery of the particles, whereas the core is composed of the Ce-rich phase.  相似文献   

7.
ZSM-5 zeolite has been successfully synthesized in-situ on calcined kaolin microspheres by the hydrothermal method using n-butylamine as a template. The supported ZSM-5 was characterized by X-ray diffraction and scanning electron microscopy. The effect of calcination temperature of kaolin microspheres on the in-situ synthesis of ZSM-5 was investigated. The influence of the pretreatment temperature on the properties of kaolin microspheres including phase transformation, amounts of active SiO2 and Al2O3, and pore structures, was studied using fourier transform infrared (FT-IR), nitrogen adsorption and chemical analysis. The results showed that when the calcination temperature increased from 300 to 900 °C, the amount of active SiO2 in the kaolin microspheres increased slightly and the amount of active Al2O3 initially increased rapidly and then decreased steadily. The surface area and pore volume of the kaolin calcined at both low and high temperatures was less than those of kaolin calcined at a medium temperature. The property changes of kaolin caused the relative crystallinity of in situ synthesized ZSM-5 to vary.  相似文献   

8.
M. Berg  S. Js 《Catalysis Today》1995,26(3-4):223-229
The activity of magnesium oxide for catalytic combustion of methane was examined and the results were compared with experimental results for manganese-substituted barium hexaaluminate. The catalysts were calcined at temperatures up to 1 500°C and the effects of temperature, space velocity and calcination temperature were examined. The catalysts were also characterized with BET and XRD. For magnesium oxide calcined at 1 100°C the ignition temperature T10% was decreased by 270°C compared to the non-catalyzed reaction. For the same catalyst T50% was measured to be 795°C. The corresponding temperature for the hexaaluminate was 640°C. The difference between the two catalysts decreased after calcination at 1 500°C. For the magnesium oxide the influence of catalytically initiated homogeneous gas phase reactions was studied by varying the post catalytic volume of the reactor (and hence the residence time in the heated zone after the catalyst). It was shown that these catalytically initiated homogeneous gas phase reactions are significant for the methane conversion.  相似文献   

9.
A 5 wt% CoOx/TiO2 catalyst has been used to study the effect of calcination temperature on the activity of this catalyst for CO oxidation at 100 °C under a net oxidizing condition in a continuous flow type fixed-bed reactor system, and the catalyst samples have been characterized using TPD, XPS and XRD measurements. The catalyst after calcination at 450 °C gave highest activity for this low-temperature CO oxidation, and XPS measurements yielded that a 780.2-eV Co 2p3/2 main peak appeared with this catalyst sample and this binding energy was similar to that measured with pure Co3O4. After calcination at 570 °C, the catalyst, which had possessed practically no activity in the oxidation reaction, gave a Co 2p3/2 main structure peak at 781.3 eV which was very similar to those obtained for synthesized ConTiOn+2 compounds (CoTiO3 and Co2TiO4), and this catalyst sample had relatively negligible CO chemisorption as observed by TPD spectra. XRD peaks indicating only the formation of Co3O4 particles on titania surface were developed in the catalyst samples after calcination at temperatures ≥350 °C. Based on these characterization results, five types of Co species could be modeled to exist with the catalyst calcined at different temperatures. Among these surface Co species, the Type A clean Co3O4 particles were predominant on a sample of the catalyst after calcination at 450 °C and highly active for CO oxidation at 100 °C, and the calcination at 570 °C gave the Type B Co3O4 particles with complete ConTiOn+2 overlayers inactive for this oxidation reaction.  相似文献   

10.
Jun Fan  Xiaodong Wu  Lei Yang  Duan Weng   《Catalysis Today》2007,126(3-4):303-312
CeO2–ZrO2–La2O3 (CZL) mixed oxides were prepared by citric acid sol–gel method. The as-received gel was calcined at 500, 700, 900 and 1050 °C to obtain the so-called C5, C7, C9 and CK, respectively. The C5, C7 and C9 powders were impregnated with H2PtCl6 and then calcined at 500 °C to prepare P5C5, P5C7 and P5C9, respectively. The impregnated CK powders were calcined at 500, 700 and 900 °C to prepare P5CK, P7CK and P9CK, respectively. The XRD and XPS analyses show that the surface distribution of Pt is evidently influenced by the structural and textural properties of the support. The CO adsorption followed by FTIR reveals that the dispersion and the chemisorption sites of Pt are reduced as the calcination temperature of CZL support increases. The chemisorption ability of the CK samples is even completely deactivated. The encapsulation mechanism, which has been applied to explain the so-called strong metal–support interaction (SMSI) after reductive treatment, is introduced here to demonstrate the abnormal observations though the samples were prepared in oxidative atmosphere. The HRTEM results also confirm this explanation. The effects of oxygen vacancies, the chemisorption sites on the Pt surface and Pt/Ce interfacial sites on the three-way catalytic activities are discussed.  相似文献   

11.
A simple procedure for the obtaining of microporous high-surface area layered ceria is described. The synthesis consists of the formation of cerium hydroxide by precipitation of cerium (III) chloride with ammonium carbonate followed by a calcination step. The samples obtained were calcined at temperatures from 150 °C to 350 °C. The effects of calcination temperature on the crystalline phase, particle size, anisotropy, surface area and the textural, morphological and reducibility properties have been studied by powder X-ray diffraction, BET, scanning electron microscopy and temperature-programmed reduction techniques. The anisotropic effects on the particle growth were studied by means of a Williamson–Hall plot.  相似文献   

12.
采用水热合成法,以纯SiO2为源物质,在介孔Y2O3掺杂的ZrO2(YZ)及大孔α-Al2O3支撑体上制备出高质量的MFI型沸石分子筛膜,通过H2/n-C4H10气体混合物的渗透分离和p-xylene的蒸发研究了不同支撑体上MFI型沸石分子筛膜分离性能,在较低温度范围,YZ支撑的MFI型沸石分子筛膜中n-C4H10的渗透率比Al2O3支撑的膜高很多,最大n-C4H10与H2的分离率达到500,Al2O3支撑的膜中py-xylene的蒸发流量随时间下降很快,而YZ支撑的膜中的蒸发流量则变化缓慢,用XRD对膜的晶体结构进行分析,通过多种温度下热处理不同支撑体上的膜样品研究了其热稳定性与支持体材料的关系,YZ支撑的MFI型沸石分子筛膜的MFI结构在1000摄氏度后仍能保持,而Al2O3支撑的膜950摄氏度时已完全转变为石英相,研究结果表明,YZ支撑的MFI型沸石分子筛膜比Al2O3支撑的膜表现出更好的厌不性,热稳定性以及抗阻塞性。  相似文献   

13.
This contribution deals with the synthesis of a silicon-rich ZSM-5 obtained from an amorphous organo-alumino-silicic gel. The gel was formed by reacting a mechanical mixture of RHA (rice hull ash), silica’s source, and of natural clinoptilolite, source of alumina, with glycerol during 2 h at 200 °C. After a maturation period of one day at 60 °C, the reaction product was hydrolyzed by a tetra-propyl-ammonium (TPA) solution and then aged for two days at 135 °C in a stainless steel autoclave. After washing and drying, the X-ray pattern showed a well crystallized ZSM-5. The textural analysis of the slowly calcined solid at 500 °C for 4 h, and the SEM micrographies evidence that the zeolite was supported on mesoporous silica. The proportion of both components depends on the tunable hydrolysis conditions.  相似文献   

14.
Nanosized anatase TiO2-coated kaolin composites were prepared by the chemical deposition method starting from calcined kaolin and TiCl4. The resultant TiO2 nanoparticles on the kaolin surfaces existed in anatase phase after calcination at 200, 400, and 900 °C for 1 h, respectively. The surfaces of the kaolin powders were uniformly coated by a monolayer of TiO2 nanoparticles. The higher calcination temperature was beneficial to formation of well crystallized anatase TiO2 nanoparticles. The light scattering indexes of the TiO2-coated calcined kaolin composites were two times higher than that of the kaolin substrate. XPS analysis shows that TiO2 coating layers anchored at the kaolin surfaces via the Ti-O-Si and Ti-O-Al bonds.  相似文献   

15.
Mixed matrix membranes (MMMs) were made by incorporating vinyltrimethoxysilane (VTMS)‐modified Silicalite‐1 zeolite nanoparticles (V‐Silicalite‐1 NPs) into fluorinated polybenzoxazine (F‐PBZ) modified polydimethylsiloxane (PDMS) polymer through in situ polymerization method. The membrane morphology, surface wettability, and pervaporation performance were systematically investigated. The addition of F‐PBZ into PDMS membranes resulted in substantially improved flux and marginal increase of separation factor, which is the result of higher free volume and higher hydrophobicity caused by the addition of F‐PBZ. The modification of Silicalite‐1 NPs improved the interfacial contact between zeolite crystals and polymer phase. The incorporation of hydrophobic V‐Silicalite‐1 zeolite NPs into the PDMS membranes led to much higher separation factor but reduced flux, which is the result of increased hydrophobicity and reduced free volume. The three‐component MMMs with V‐Silicalite‐1 zeolite NPs in the F‐PBZ fluorinated PDMS exhibited separation factor of 28.7 and flux of 0.207 kg m?2 h?1 for 5 wt % ethanol aqueous solution at 50 °C, while the pure PDMS membranes only had separation factor of 4.8 and flux of 0.088 kg m?2 h?1. The substantial increase of both flux and separation factor were attributed to the higher hydrophobicity and free volume caused by the incorporation of both hydrophobic zeolite crystals and F‐PBZ polymer into the PDMS membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44753.  相似文献   

16.
Mixed matrix membranes were prepared by incorporating zeolite 4A into polyimide of Matrimid 5218 using solution-casting technique. The fabricated membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA). It was found that the higher annealing temperature of 250 °C is more favorable to improve adhesion between zeolite and polymer phases. Effects of different parameters such as temperature (30–60 °C), water content in feed (10–40 wt.%), zeolite loading (0–15 wt.%) and polymer content (10 and 15 wt.%) on pervaporation dehydration of isopropanol were studied. Sorption studies were carried out to evaluate degree of swelling of the membranes in feed mixtures of water and isopropanol. The experimental results showed that both pervaporation flux and selectivity increase simultaneously with increasing the zeolite content in the membranes. The membrane containing Matrimid 5218 (10 wt.%)–zeolite 4A (15 wt.%) exhibits the highest separation factor (α) of 29,991 with a substantial permeation flux (J) of 0.021 kg/m2 h at 30 °C for 10 wt.% of water in the feed. The PV performance was also studied in term of pervaporation separation index (PSI). Permeation flux was found to follow the Arrhenius trend over the investigated temperature range.  相似文献   

17.
Dry reforming of methane has been investigated on two series of catalysts either prepared by co-precipitation: n(NixMgy)/Al, NixMgy and NixAly or prepared by impregnation: Ni/MgO (mol% Ni = 5, 10). The catalysts, calcined at 600–900 °C, were characterized by different techniques: BET, H2-TPR, TPO, XRD, IR, and TEM-EDX analysis. The surface BET (30–182 m2 g−1) decreased with increasing the temperature of calcination, after reduction and in the presence of Mg element. The XRD analysis showed, for n(NixMgy)/Al catalysts, the presence of NiAl2O4 and NiO–MgO solid solutions. The catalyst reducibility decreased with increasing the temperature of pretreatment. The n(NixMgy)/Al catalysts were active for dry reforming of methane with a good resistance to coke formation. The bimetallic catalyst Ni0.05Mg0.95 (calcined at 750 °C and tested at 800 °C) presents a poor activity. In contrast, the 5% Ni/MgO catalyst, having the same composition but prepared by impregnation, presents a high activity for the same calcination and reaction conditions. For all the catalysts the activity decreased with increasing the temperature of calcination and a previous H2-reduction of the catalyst improves the performances. The TPO profiles and TEM-EDX analysis showed mainly four types of coke: CHx species, surface carbon, nickel carbide and carbon nanotubes.  相似文献   

18.
New basic solid catalysts are obtained by nitridation of zeolite beta at temperatures as low as 300 °C. These materials exhibit excellent catalytic activity in the Knoevenagel condensation of benzaldehyde with dicyanomethane (malononitrile). Nitridated samples of zeolite beta were prepared by treating the parent materials in an ammonia flow at temperatures between 300 °C and 800 °C for 24 h and 48 h, respectively. Samples of zeolite beta nitridated at 300 °C for 24 h or 48 h exhibited excellent catalytic activities which are higher than those observed for beta-type catalysts nitridated at higher temperatures and higher than activities reported earlier for ammonia treated aluminosilicates, AlPOs, SAPOs, and mesoporous silicon oxinitride materials. The nitridated beta zeolites were characterized by powder XRD, FTIR, nitrogen adsorption and elemental analysis techniques. It is suggested that the presence of silanol groups along with basic –NH2 functional groups is responsible for the exceptional activity of the catalysts treated at low temperature.  相似文献   

19.
管式支撑体内表面NaA分子筛膜的合成与表征   总被引:1,自引:1,他引:0       下载免费PDF全文
采用转动合成方式通过二次生长法在管式α-Al2O3支撑体内表面合成了NaA分子筛膜,采用X射线衍射仪(XRD)、场发射扫描式电子显微镜(FE-SEM)和渗透汽化分离技术对所合成的膜进行了系统表征。考察了合成釜转速对分子筛膜合成的影响,结果表明合成釜转速的提高有利于分子筛膜合成。在转速为4 r·min-1时所合成NaA分子筛膜分离因子高达2370,渗透通量1.86 kg·h-1·m-2左右(乙醇/相似文献   

20.
Zeolite 4A-incorporated poly(vinyl alcohol)/poly(vinyl pyrrolidone) (PVA/PVP) membranes were prepared for pervaporation separation of methanol/methyl acetate mixtures. These membranes were characterized by Infrared spectroscopy, X-ray diffraction and Scanning electron microscopy. The results showed that crystallinity of the membrane decreased with the increase of zeolite 4A content. The effect of zeolite loading, feed composition and temperature on the membrane separation performance were discussed in detail. With the increase of zeolite 4A content, permeation flux increased continuously, but separation factor first increased and then decreased. The addition of 2.5 wt% zeolite 4A in the polymer membrane improved the separation factor from 12.9 (for PVA/PVP membrane) to the maximum value of 34.4 for 20 wt% methanol in feed at 45 °C. The separation factor decreased with increasing feed temperature, however, the flux increased with increasing feed temperature. Zeolite 4A-incorporated PVA/PVP membranes provide an effective method for the separation of methanol/methyl acetate azeotropic mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号