首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究RDX基PBX-9炸药的热响应规律,分别采用1.5、3.0、4.5、8.0℃/min的升温速率对PBX-9炸药药柱进行了烤燃试验。用热电偶测试了药柱表面的温度变化,通过测量冲击波超压和收集试验弹残骸,分析了药柱的反应程度,获得了不同升温速率下的响应规律。结果表明,升温速率为1.5~8.0℃/min时,对PBX-9炸药的响应温度没有明显的影响,试验弹响应时药柱温度约为140~150℃,均为燃烧反应。烤燃过程中黏结剂的分解对PBX-9炸药响应特性影响较大,使其反应程度一致。采用FLUENT软件对该烤燃试验过程进行了数值模拟,得到PBX-9炸药反应的活化能和指前因子分别为184.2×103J/mol和7.24×1018s-1。  相似文献   

2.
RDX基PBX炸药烤燃试验与数值计算   总被引:3,自引:0,他引:3  
对RDX基PBX炸药进行了烤燃试验,建立了炸药烤燃计算模型,其中加入了Frank-Kamenetskii、SestakBerggreen和McGuire-Tarver反应模型,采用流体力学计算软件Fluent进行了数值模拟.试验结果表明,PBX炸药在1K/min升温速率下发生剧烈反应的时间为176.0min,此时试样中...  相似文献   

3.
为了获取不同约束方式和强度下HMX基压装含铝炸药慢速烤燃响应特性,以典型超音速钻地/侵爆战斗部为背景,设计了装药长径比为5∶1的缩比烤燃弹;开展了无约束和不同约束强度下HMX基压装含铝炸药慢速烤燃实验;获取了无约束条件下HMX基压装含铝炸药的反应过程,以及不同壳体壁厚(4、10、16和20mm)与端盖螺纹长度(10、12和14mm)时装药反应烈度的变化规律。结果表明,慢速烤燃条件下该HMX基压装含铝炸药反应包括生成气体、端面燃烧、火焰熄灭3个阶段;烤燃弹约束强度影响装药烤燃时间和点火温度,进而影响烤燃弹内部反应压力增长,最终导致不同的反应等级;当螺纹长度(L)为14mm时,壳体厚度(δ)由4mm增加至20mm,反应等级由爆燃发展为爆炸而后降低为燃烧;当壳体壁厚(δ)为10mm时,螺纹连接长度(L)由10mm增加至14mm,烤燃弹反应等级由燃烧转变为爆炸;当壳体壁厚(δ)与等效壳体壁厚(δe)相当时,烤燃弹约束强度较为均匀,有利于反应压力的不断增长,最终导致烤燃弹发生更为剧烈的爆炸反应。  相似文献   

4.
为研究热刺激强度对DNAN基熔铸炸药烤燃试验的热反应规律,利用自行设计的烤燃试验装置,采用多点测温烤燃试验,在升温速率0.055、1.0、2.0K/min下对该炸药进行了烤燃试验。建立了炸药烤燃计算模型,分别模拟计算了升温速率0.055、0.5、1.0、2.0、3.0、5.0K/min下的烤燃响应情况。结果表明,升温速率对DNAN基熔铸炸药的相变温度、响应温度、点火位置都有较大影响;升温速率为0.055K/min时,炸药发生相变和响应时的温度较低,点火区域位于药柱中心;升温速率为5.0K/min时,炸药发生相变和响应时的温度较高,而点火区域位于药柱上、下两端环状区域;随着升温速率的增大,炸药的响应温度不断升高,相变时的温度呈对数增加。  相似文献   

5.
GHL01炸药烤燃实验的尺寸效应与数值计算   总被引:1,自引:0,他引:1  
在不同升温速率下,对不同尺寸的GHL01炸药装药进行了烤燃实验,建立了烤燃实验的计算模型。分析了装药尺寸对炸药烤燃临界环境温度和响应程度的影响,根据实验结果标定了反应模型的动力学参数。结果表明,GHL01炸药的烤燃实验存在一个临界升温速率,当升温速率大于临界升温速率时,随着装药直径的增加,炸药发生点火的临界环境温度增大,当升温速率小于临界升温速率时,随着装药直径的增加,临界环境温度先减小后增大,存在极小值(即最小临界环境温度),且随着升温速率的减小,最小临界环境温度降低。GHL01炸药的临界升温速率为0.2~0.4K/min。按照GHL01炸药点火的原因不同,提出了以临界升温速率作为慢速烤燃和快速烤燃的分界点。  相似文献   

6.
为了研究RDX基炸药在不同烤燃温度下的热分解规律,采用恒温控制技术,以1℃/min的升温速率对RDX基炸药进行了烤燃试验。利用FLUENT软件对不同温度下的热爆炸延滞期进行了数值模拟。结果表明,烤燃温度对RDX基炸药的热分解有重要影响,当恒定温度达到175℃时,RDX基炸药的分解速率发生明显变化。数值模拟结果表明,当以1℃/min的升温速率加热至178℃恒定660min时,RDX基炸药发生了自加热反应,最终导致点火。RDX基炸药发生自加热反应的临界温度为178℃。  相似文献   

7.
为研究几何尺寸对DNAN基熔铸炸药热反应规律的影响,自行设计了慢烤试验装置,采用多点测温慢烤试验方法,分别在1°C/min和3.3°C/h两种升温速率下进行了4种尺寸(Φ19mm×19mm、Φ19mm×38mm、Φ19mm×76mm、Φ30mm×30mm)弹药的慢烤试验,建立了炸药慢烤试验计算模型,采用Fluent软件计算了升温速率3.3℃/h下一维、二维方式几何尺寸增加时烤燃弹的响应情况。结果表明,几何尺寸和升温速率共同影响烤燃弹的响应特性;对相同烤燃弹,在升温速率3.3℃/h下加热响应等级比升温速率1℃/min下的更剧烈;在升温速率3.3℃/h下,烤燃弹点火位置均位于几何中心,并且随着几何尺寸的增加,点火时刻烤燃弹的外壁温度逐渐降低,烤燃弹存在发生点火反应的最低环境温度为174.74℃,且当药柱长径比为4时,点火时刻外壁温度随着药柱直径的增加呈指数衰减趋势。  相似文献   

8.
采用自行设计的烤燃试验装置,以1.0℃/min的升温速率并采用恒温控制技术对聚黑(JH)炸药进行了不同温度下的50min恒温烤燃试验;用FLUENT软件对不同升温速率和装药尺寸的聚黑炸药热起爆临界温度进行了数值计算。结果表明,炸药存在一个热起爆临界温度,炸药置于恒定高温环境中比慢速烤燃更危险,发生反应的环境温度更低,响应更剧烈。随着升温速率的增加,药柱的热起爆临界温度缓慢升高,当升温速率大于10.0℃/min时,热起爆临界温度均为197℃。药柱的长径比相同时,随着药柱尺寸的增加,聚黑炸药的热起爆临界温度逐渐降低,当药柱尺寸增加到一定值时,药柱尺寸对聚黑炸药热起爆临界温度的影响将减弱。  相似文献   

9.
物理界面对炸药慢速烤燃特性的影响   总被引:1,自引:0,他引:1  
利用自行设计的烤燃试验装置,在1℃/min的升温速率下对RDX基高能炸药进行了慢速烤燃试验。用FLUENT软件进行了模拟计算,研究了3种物理界面(空气、T-09耐烧蚀隔热涂料和GPS-2硅橡胶涂料)对炸药慢速烤燃特性的影响。结果表明,物理界面是影响炸药慢速烤燃响应特性的重要因素。相同条件下,物理界面为空气时,能增加烤燃弹的烤燃响应温度、响应时间以及烤燃响应的剧烈性;物理界面为惰性材料时,能增加烤燃弹的烤燃响应温度、响应时间,降低烤燃弹烤燃响应的剧烈性。数值计算结果表明,炸药慢速烤燃响应温度及烤燃时间受物理层厚度的影响,物理层厚度为0~5mm时,炸药烤燃响应温度、烤燃时间随着物理层厚度的增加而增大;物理层厚度为2.5mm时,炸药烤燃响应温度、烤燃时间达到最大值,之后随着物理层厚度的增加而减小。  相似文献   

10.
利用自行设计的烤燃试验装置,采用多点测温方式,以1.0℃/min的升温速率对3种不同装药尺寸的DANA基熔铸混合炸药进行慢烤,测量烤燃弹的温度变化,以此为基础,建立烤燃弹的计算模型,利用FLIENT软件对不同装药尺寸的烤燃弹进行了数值模拟,研究装药尺寸对DNAN熔铸混合炸药烤燃响应特性的影响。结果表明,约束条件和升温速率不变时,装药尺寸对DNAN基熔铸混合炸药的响应温度有明显影响,装药直径为19mm的烤燃弹在升温速率1.0℃/min下,当长径比小于4时,炸药的响应温度随长径比增大呈指数降低趋势,同时响应时间随装药尺寸增大也呈指数衰减;当长径比大于4时,炸药的响应温度趋于恒定,响应时间也基本不变。在升温速率不变时,DNAN熔铸炸药的相变温度与尺寸无关,在1.0℃/min升温速率下的炸药点火位置均在药柱中心,点火区域与装药尺寸呈几何相似。  相似文献   

11.
不同约束条件下钝化RDX的烤燃响应特性   总被引:5,自引:0,他引:5  
以2℃/min的升温速率对带壳的钝化RDX炸药进行慢烤试验,研究了不同约束条件下钝化RDX的烤燃响应特性.结果表明,材料相同时,随着厚度的增加炸药耐烤燃时间随之增长,但反应的剧烈程度逐渐减弱;厚度相同时,耐烤燃特性随材料物理性能的不同发生变化.根据材料力学理论和传热学理论,对所产生的现象进行了分析.结果表明,材料相同时,增加壳体的厚度,可以提高钝化RDX的热安定性;材料不同时,采用热导性低的材料可以提高炸药的热安定性.  相似文献   

12.
基于ABAQUS的PBX炸药烤燃试验数值计算   总被引:1,自引:0,他引:1  
建立了炸药烤燃过程的三维计算模型,采用Frank-Kamenetskii模型描述炸药自热反应的放热过程,编写了ABAQUS有限元软件的用户子程序HETVAL,模拟计算了不同升温速率、装药尺寸和壳体厚度等条件下PBX炸药的烤燃过程,分析了点火位置的分布规律。计算结果表明,随升温速率的增加和装药长径比的减小,点火位置从PBX炸药内部移向边缘;随着升温速率的增加,炸药的点火时间显著缩短;装药尺寸和壳体厚度对PBX炸药点火时间和点火温度的影响较小。  相似文献   

13.
低易损性PBX炸药烤燃试验方法研究   总被引:2,自引:0,他引:2  
烤燃试验是评估和检验炸药易损性能的重要试验之一。通过分析炸药的安全可靠性及战场生存能力阐明了PBX炸药烤燃试验的意义和重要性,论述了PBX炸药烤燃试验国内外的发展现状,介绍了烤燃试验的方法,分析了影响烤燃试验结果的主要因素。  相似文献   

14.
高聚物黏结炸药的冲塞试验研究   总被引:3,自引:0,他引:3  
用冲塞试验评价大药量装药在撞击、剪切、绝热加热等综合作用条件下的安全性.用火药加速装置对试件加速,并通过高速摄像机拍摄炸药试验件跌落撞靶、点火等试验过程,利用冲击波压力传感器测试冲击波超压表征炸药试验件的反应程度.结果表明,PBX-1炸药在撞靶速度高达37.6 m/s时没有发生反应,且PBX-2炸药在撞靶速度为27.7 m/s时发生了爆燃反应,在撞击速度低于25.5 m/s时未发生反应,说明PBX-2炸药的冲塞试验撞击感度高于PBX-1炸药.  相似文献   

15.
超细HNS在非限制条件下的烤燃试验   总被引:1,自引:0,他引:1  
为了获得六硝基芪的烤燃响应特性,对六硝基芪进行了非限制条件下的程序升温烤燃试验.结果表明,随着升温速率的增加,HNS的起始反应温度呈升高的趋势.3.3℃/h升温速率下3种尺寸的HNS药柱只发生热分解反应,且反应后发现大量黑色残留物.在5℃/min和10℃/min条件下药柱发生燃烧或不完全燃烧反应,均没有发生爆炸现象.几...  相似文献   

16.
为了分析由聚能射流引起的两种典型屏蔽压装PBX炸药的冲击起爆感度,采用某Ф80mm制式破甲弹作为标准射流源,在炸高为150mm的条件下,对不同厚度45~#钢覆盖板屏蔽的PBX-1和PBX-2炸药进行了射流冲击起爆感度试验;采用"兰利法"对覆盖板的厚度进行选取,得到了聚能射流引爆两种典型压装PBX炸药的临界隔板厚度。结果表明,临界爆轰时,PBX-1炸药覆盖板厚度为35~40mm,PBX-2炸药覆盖板厚度为140~150mm,即PBX-1的临界隔板厚度比PBX-2炸药减少73.3%;PBX-1炸药起爆所需的射流能量为185mm~3/μs~2,远高于PBX-2炸药,因此PBX-1炸药的射流安全性显著优于PBX-2炸药。  相似文献   

17.
热和枪击复合环境试验中PBX-2炸药的响应特性   总被引:4,自引:2,他引:2  
为研究炸药在热和枪击复合环境下的安全性,采用在枪击试验样品上增加加热系统的方式,对Φ75 mm×150 mm PBX-2炸药进行了模拟复合环境试验.试验过程中采用热电偶测试样品内不同位置的温度变化过程,通过冲击波超压测试分析了炸药的反应程度,获得了PBX-2炸药在热和枪击复合环境试验中的响应特性.结果表明,热和枪击复合环境试验中PBX-2炸药的反应程度基本一致,建立的热和枪击复合环境试验方法,为评估炸药在异常环境下的安全性能提供了一种新的技术途径.  相似文献   

18.
火烧试验中不同尺寸PBX-2的响应规律   总被引:4,自引:0,他引:4  
采用加强约束的方式对几种不同尺寸的PBX-2炸药进行火烧试验,用热电偶测试了样品内部不同位置的温度变化过程,通过冲击波超压测量了不同尺寸炸药样品的反应程度,分析了不同尺寸PBX-2炸药在火烧试验中的响应规律.结果表明,在相同的壳体厚度以及一定的约束强度下,PBX-2的尺寸越小反应越强烈,尺寸越大反应越弱.  相似文献   

19.
装药尺寸及结构对HTPE推进剂烤燃特性的影响   总被引:2,自引:0,他引:2  
利用自行设计的烤燃实验装置,对HTPE推进剂小尺寸烤燃试样分别进行了升温速率为1、2℃/min的烤燃实验,以此为基础,建立了小尺寸烤燃试样和固体火箭发动机的三维计算模型,利用Fluent软件分别对两者不同升温速率下的烤燃行为进行了数值模拟计算,研究了小尺寸烤燃试样与固体火箭发动机的装药尺寸及结构差异对HTPE推进剂烤燃响应特性的影响。结果表明,HTPE推进剂的烤燃响应时间、响应温度随升温速率的变化趋势与装药尺寸及结构无关,但响应时间和响应温度的绝对值与装药尺寸及结构均有很大关系,升温速率为3.3℃/h(0.055℃/min)时,小尺寸烤燃试样的响应时间为40.3h,响应温度为158℃,而固体火箭发动机响应时间为28.83h,响应温度为120.13℃。推进剂装药尺寸及结构对烤燃点火位置有明显影响,进而影响到烤燃速度范畴的区分,小尺寸烤燃试样慢烤升温速率不大于2℃/min,而固体火箭发动机慢烤升温速率为小于0.5℃/min。因此,对快速、慢速烤燃的严格划分,必须结合装药尺寸、装药结构及推进剂种类等因素进行。升温速率对固体火箭发动机存在热积累临界位置效应,本研究条件下影响热积累临界位置的升温速率为0.5℃/min。  相似文献   

20.
模拟破片撞击下PBX-2炸药的响应规律   总被引:1,自引:0,他引:1  
为了研究炸药在不同速度破片撞击环境下的安全性能,设计了小弹丸撞击方式模拟破片作用,对PBX-2炸药进行了撞击试验。采用锰铜压力计测试样品中的压力变化,通过高速录像照片分析了点火反应过程,用冲击波超压传感器测量了炸药的反应超压,获得不同速度模拟破片撞击下炸药的响应规律。结果表明,模拟破片试验中PBX-2炸药反应程度明显高于枪击试验;建立的模拟破片撞击试验方法为评估炸药在异常环境下的安全性能提供了一种新的技术途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号