首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《Ceramics International》2020,46(17):26970-26984
This work discusses the pressureless sintering of a boron carbide-titanium diboride (B4C– TiB2) nanocomposite via in-situ reaction of the boron carbide/titanium dioxide/carbon system. Attempting to sinter pure boron carbide leads to poor mechanical properties. In this work, the effect of adding TiO2 to B4C on mechanical properties of the boron carbide was investigated. Thermodynamic simulations were performed with HSC chemistry software to determine the phases which were most likely to form during the sintering process. The reaction thermodynamics suggested that during the sintering process, formation of TiB2 occurs preferentially over formation of TiC. For examination of the microstructural evolution of the samples, Scanning Electron Microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were utilized. The density, porosity, Young's modulus, microhardness and fracture toughness of the specimens were compared. Optimum properties were achieved by adding 10 wt% TiO2. In the sample possessing 10 wt% TiO2, the relative density, Young's modulus, hardness and fracture toughness were 94.26%, 428 GPa, 23.04 GPa and 5.19 MPa m0.5, respectively, and the porosity was decreased to 5.73%. Furthermore, phase analysis via XRD confirmed that the final product was free of unreacted TiO2 or carbon.  相似文献   

2.
Nitrogen (N)-doped conductive silicon carbide (SiC) of various electrical resistivity grades can satisfy diverse requirements in engineering applications. To understand the mechanisms that determine the electrical resistivity of N-doped conductive SiC ceramics during the fast spark plasma sintering (SPS) process, SiC ceramics were synthesized using SPS in an N2 atmosphere with SiC powder and traditional Al2O3–Y2O3 additive as raw materials at a sintering temperature of 1850–2000°C for 1–10 min. The electrical resistivity was successfully varied over a wide range of 10−3–101 Ω cm by modifying the sintering conditions. The SPS-SiC ceramics consisted of mainly Y–Al–Si–O–C–N glass phase and N-doped SiC. The Y–Al–Si–O–C–N glass phase decomposed to an Si-rich phase and N-doped YxSiyCz at 2000°C. The Vickers hardness, elastic modulus, and fracture toughness of the SPS-SiC ceramics varied within the ranges of 14.35–25.12 GPa, 310.97–400.12 GPa, and 2.46–5.39 MPa m1/2, respectively. The electrical resistivity of the obtained SPS-SiC ceramics was primarily determined by their carrier mobility.  相似文献   

3.
《Ceramics International》2022,48(16):23151-23158
SiC composite ceramics have good mechanical properties. In this study, the effect of temperature on the microstructure and mechanical properties of SiC–TiB2 composite ceramics by solid-phase spark plasma sintering (SPS) was investigated. SiC–TiB2 composite ceramics were prepared by SPS method with graphite powder as sintering additive and kept at 1700 °C, 1750 °C, 1800 °C and 50 MPa for 10min.The experimental results show that the proper TiB2 addition can obviously increase the mechanical properties of SiC–TiB2 composite ceramics. Higher sintering temperature results in the aggregation and growth of second-phase TiB2 grains, which decreases the mechanical properties of SiC–TiB2 composite ceramics. Good mechanical properties were obtained at 1750 °C, with a density of 97.3%, Vickers hardness of 26.68 GPa, bending strength of 380 MPa and fracture toughness of 5.16 MPa m1/2.  相似文献   

4.
In this work, the fabrication of bulk TiC0.7/TiB2 nanostructured composites through metastable transformation processing is investigated by taking advantages of two non-conventional powder metallurgy methods. First, the highly metastable TiC0.7/TiB2 agglomerated powders are synthesized by the so-called self-propagating high-temperature synthesis (SHS), followed by rapid quenching. Then, the spark plasma sintering (SPS) method is adopted to consolidate the SHSed powders.A bulk ceramic composite with nanocrystalline microstructure characterized by a high-relative density is then obtained. Dwell temperature of 1400 °C, heating time of 3 min, and total processing time equal to 5 min, while applying a mechanical pressure of 20 MPa, are found to be the optimal SPS experimental conditions in order to obtain near-fully densified samples.The obtained TiC0.7/TiB2 samples exhibit hardness HV5 as high as 24 GPa, modulus of elasticity of about 400 GPa, fracture toughness of about 5.6 MPa m1/2, and a compressive strength of about 2.9 GPa. A very low-wear rate (Wv = 3.8 × 10−6 mm3/(N m)) and a good thermal shock resistance (ΔTc = 250 °C) are also displayed. In addition, a high-abrasive wear factor (AWF) equal to 1.84 is evaluated on the basis of the achieved mechanical properties. These results make the obtained TiC0.7/TiB2 composite suitable for wear resistant parts as well as cutting tool materials.  相似文献   

5.
The medium-entropy carbide (W,Ti,V)C0.8 ceramics were prepared by sparking plasma sintering at temperatures between 1400 and 1700°C. The effects of sintering temperature on the microstructure and mechanical properties of the medium-entropy carbide (W,Ti,V)C0.8 ceramics were investigated. X-ray diffraction, scanning electron microscope, and energy dispersive spectrometer were used to confirm the formation of single-phase face-centered cubic (FCC) solid solution of the medium-entropy carbide (W,Ti,V)C0.8 ceramics prepared at a sintering temperature of 1600°C. It was found that the mechanical properties of the material were improved by solid solution strengthening during the formation of single-phase FCC solid solution, and the best overall performance of the medium-entropy carbide (W,Ti,V)C0.8 ceramics was achieved at 1600°C, when the hardness value was 22.3 ± 1.8 GPa, the fracture toughness was 5.7 ± 0.8 MPa·m1/2, the flexural strength was 605 ± 4 MPa, and the compressive strength was 1.84 GPa. Most importantly, the addition of TiC0.4 promoted the diffusion among the elements of the medium-entropy carbide (W,Ti,V)C0.8 ceramics, which contributed to the formation of single-phase FCC solid solution and significantly reduced the sintering temperature of the medium-entropy carbide (W,Ti,V)C0.8 ceramics due to the effect of vacancies. This study provides a new idea for the preparation of medium-entropy carbide ceramics.  相似文献   

6.
The feasibility of fabricating novel boron carbide–silicon carbide composites by spark-plasma sintering (SPS) of B4C+Si powder mixtures at only 1400 °C was investigated. First, it is shown that B4C can be fully densified at 1400 °C if ~20 vol% Si aids are used, leading to bi-particulate composites constituted by boron carbide (major phase) and SiC (minor phase). The formation of these composites is due to the fact that Si acts as a reactive sintering additive during SPS. Lower and higher proportions of Si aids are not optimal, the former leading to porous bi-particulate composites and the latter to dense triplex-particulate composites with some residual free Si. Importantly, it is also shown that these novel boron carbide–SiC composites are fine-grained, nearly-ultrahard, moderately tough, and more affordable to fabricate, a combination that makes them very appealing for many engineering applications. Second, it is demonstrated that during the heating ramp of the SPS cycles a eutectic melt is formed that promotes full low-temperature densification by transient liquid-phase sintering if sufficient Si aids are used. Otherwise, a subsequent stage of solid-state sintering is required at higher temperatures once the eutectic liquid has been consumed in the in-situ formation of SiC. And third, it is demonstrated that during SPS the original B4C undergoes a gradual isostructural crystallographic transition towards a Si-doped carbon-deficient boron carbide that is more relevant with increasing proportion of Si aids, and it is identified that the carbon source for the formation of SiC is almost exclusively the carbon exsoluted from the B4C crystals themselves during their isostructural transition. Finally, implications of interest for the ceramic and hard-material communities are discussed.  相似文献   

7.
This paper has studied the densification, microstructure, and properties of polycrystalline La0.6Ce0.3Pr0.1B6–ZrB2 composites prepared by spark plasma sintering (SPS). The highest relative density of 98.7% is obtained at the SPS condition of axial mechanical pressure 50 MPa, sintering temperature 1900°C and holding time 5 min. The Vickers hardness decreases linearly from the maximum value of 21.49 GPa to the value of 8.24 GPa with the tested temperature increased from room temperature to 1000°C. The effects of crack deflection and bridging have resulted in the fracture toughness of 4.56 MPa m1/2 of dense polycrystalline La0.6Ce0.3Pr0.1B6–ZrB2 composite. The J1kV of 7.02 A/cm2 obtained at 1600°C, the work function of 2.743 eV determined by ultraviolet photoelectron spectroscopy, and the good oxidation resistance below 1100°C in air have revealed that the dense polycrystalline La0.6Ce0.3Pr0.1B6–ZrB2 composite has a good potential to be a promising hot cathode material.  相似文献   

8.
Traditionally, densification and grain growth are two competing processes in sintering of ceramics. To improve the density, while limiting grain growth at the same time, an ultrahigh pressure (>1 GPa) is employed here and results in plastic deformation as the dominant densification mechanism during the sintering process. In this way, fully dense boron carbide (B4C) structural ceramics without grain growth is prepared under the pressure of 4.5 GPa at low temperature of 1300°C in 5 minutes, while showing excellent mechanical properties such as Vickers hardness of 38.04 GPa, Young's modulus of 487.7 GPa, and fracture toughness of 3.87 MPa·m1/2. This study should also facilitate the development of other structural ceramics for practical applications.  相似文献   

9.
In this paper, the novel boron nitride micron tubes (BNMTs) were used to reinforce commercial boron carbide (B4C) ceramics prepared via spark plasma sintering technology. The effects of the sintering parameters, sintering temperature, the holding time, and the BNMTs content on the microstructure and mechanical properties of B4C/BNMTs composite ceramics were studied. The results indicated that adding a proper amount of BNMTs could inhibit the grain growth of B4C and improve the fracture toughness of the B4C/BNMTs composite ceramics. The prepared composite ceramic sample with 5 wt% BNMTs at 1850°C, 8 min and 30 MPa displayed the best mechanical properties. The relative density, hardness, fracture toughness, and bending strength of the samples were 99.7% ± .1%, 35.62 ± .43 GPa, 6.23 ± .2 MPa m1/2, and 517 ± 7.8 MPa, respectively. Therein, the corresponding value of hardness, fracture toughness, and bending strength was increased by 10.3%, 43.59%, and 61.5%, respectively, than that of the B4C/BNMTs composite ceramic without BNMTs. It was proved that the high interface binding energy and bridging effect between boron carbide and BNMTs were the toughening principle of BNMTs.  相似文献   

10.
《Ceramics International》2020,46(11):18994-18999
The infiltration of boron carbide preforms with Al alloys at relatively low temperature prevents the formation of the undesired Al4C3 phase. In the present study the effect of boron carbide powder particle size on the mechanical properties and phase composition of composites infiltrated with Al-20%Si alloys at 950 °C was investigated. According to XRD analysis, the infiltrated composites contain Al8C7B4, AlB2 and AlB12, as well as non-reacted Al and Si that originated from solidification of Al-Si alloy. The presence of small amounts of SiC was noted in specimens fabricated from fine boron carbide powder. No evidence for the formation of non-desired aluminum carbide phase was obtained. Infiltration of ceramic preforms with virtually the same green density generated composites with an elastic modulus and bending strength that continuously decreased from 270 GPa and 405 MPa to 195 GPa and 345 MPa for powder with 90% particles close to 3 μm and powder with 90% particles close to 180 μm, respectively. These results ambiguously confirm that boron carbide particle size strongly affects mechanical properties of reaction-bonded composites infiltrated with Al-Si alloy at 950 °C and reflect the amount of newly formed ceramic phases appearing during infiltration and the presence of defects at the metal-ceramic interface.  相似文献   

11.
Spark plasma sintering (SPS) is a new sintering method having shorter sintering time and higher densification speed than the traditional sintering methods. In this paper, the Si3N4/TiC ceramic tool material is sintered by SPS. The microstructure and mechanical properties of the material under different sintering parameters are compared. The sintering process of the material is then analyzed, and the best sintering parameters are obtained. Heat the material to 1600°C and keep the temperature for 15 min, then continue to heat to 1700°C and keep the temperature for 10 min, Si3N4/TiC ceramic tool material has high mechanical properties, its bending strength, fracture toughness, and Vickers hardness are 959 MPa, 8.61 MPa·m1/2, and 15.21 GPa, respectively. The scanning electron microscope (SEM) analysis shows that under this condition, the sintering additives and Si3N4/TiC material form the liquid phase, which makes the Si3N4 particles rearrange, dissolve, precipitate, and transform into rod shape β-Si3N4. In addition, under the action of pulse current and external pressure, electric sparks are generated between TiC particles, which allows the material transfer and particle refinement. Therefore, the β-Si3N4 has uniform grain size, and it is vertically and horizontally arranged in the structure, which makes the material have excellent mechanical properties.  相似文献   

12.
《Ceramics International》2023,49(2):2073-2080
Based on good thermomechanical and electromagnetic properties of silicon nitride (Si3N4), barium aluminosilicate (BaO–BaTiO3–SiO2 or BAS), and boron nitride (BN), a novel combination of Si3N4/BAS/BN composites was fabricated by spark plasma sintering (SPS) after traditional powder mixing process. The effect of different amounts of BN (3–9 wt%) on the mechanical properties of composite was studied. The phases were observed by X-ray diffraction, and the microstructures were identified by scanning electron microscopy (SEM). The optimal sample is the one containing 3 wt% of BN and is sintered under a final pressure of 50 MPa. This sample has a hardness of 9.03 GPa, a flexural strength of 418.75 MPa, an elastic modulus of 934.46 MPa, and a loss tangent of less than 0.002 in 38% of the X-band frequencies. The optimal sample thickness was determined via the Nicolson-Ross-Weir (NRW) technique considering the mechanical strength limits.  相似文献   

13.
Si3N4 ceramics were prepared by hot pressing (HP) and spark plasma sintering (SPS) methods using low content (5 mol%) Al2O3–RE2O3(RE = Y, Yb, and La)–SiO2/TiN as sintering additives/secondary additives. The effects of sintering additives and sintering methods on the composition, microstructures, and mechanical properties (hardness and fracture toughness) were investigated. The results show that fully density Si3N4 ceramics could be fabricated by rational tailoring of sintering additives and sintering method, and TiN secondary additive could promote the density during HP and SPS. Besides, SN-AYS-SPS possesses the most competitive mechanical properties among all the as-prepared ceramics with the Vickers hardness as 17.31 ± .43 GPa and fracture toughness as 11.07 ± .48 MPa m1/2.  相似文献   

14.
We describe the phase stability of a cemented tungsten carbide prepared using a high-vanadium tool steel as the cementing/binder phase and confirm suppression of (Fe, W)6C η-phase formation, attributed to the preferential formation of a V0.78W0.22C1−x phase that exists as islands within the Fe-rich binder matrix. The samples were prepared using spark plasma sintering (SPS), starting from commercially available WC and A11-LVC tool steel powders. The starting powders were ball milled adding 10, 15, and 20 vol.% steel. An A11-LVC tool steel was chosen as a low-cost hard steel (49 HRC) that does not contain Ni or Co but has a high vanadium (~9 wt.%) and carbon (~1.75 wt.%) content. Our results show that sintering by SPS can produce high-density (>98%) WC-steel specimens in which the matrix wets the WC grain surfaces and formation of the brittle η-phase is avoided. The η phase is often regarded as embrittling and undesirable, and its presence can result in degradation of mechanical properties. Microhardness values for the WC-10 and WC-15 vol.% steel samples were 12.3 ± 1.2 and 13.0 ± 0.9 GPa, respectively, whereas the fracture toughness values were 8.83 ± 0.48 and 8.81 ± 0.61 MPa·m1/2, respectively.  相似文献   

15.
Square-shaped monolithic B4C and B4C-ZrB2 composites were produced by spark plasma sintering (SPS) method to investigate the effect of 5, 10, 15 vol% ZrB2 addition on the densification, mechanical and microstructural properties of boron carbide. The relative density of B4C increased with the increasing volume fraction of ZrB2 and density differences in different regions of the sample narrowed down. Homogeneous density distribution and microstructure were accomplished with the increasing holding time from 7 to 20 min for the B4C-15 vol% ZrB2 composites, and the highest overall relative density was achieved as 99.23%. The hardness and fracture toughness of composites were enhanced with the addition of ZrB2 compared to monolithic B4C. The enhancement in fracture toughness was observed due to the crack deflection, crack bridging and crack branching mechanisms. The B4C-15 vol% ZrB2 composite exhibited the combination of superior properties (hardness of 33.08 GPa, Vickers indentation fracture toughness of 3.82 MPa.m1/2).  相似文献   

16.
The influence of different SPS-based methods, that is, conventional spark plasma sintering (SPS), flash SPS (FSPS), and reactive SPS (RSPS) on the properties of Al2O3/SiC composite was investigated. It was shown that the application of preliminary high energy ball milling of the powders significantly enhances the sinterability of the ceramics. It was also demonstrated that FSPS provides unique conditions for rapid, that is, less than a minute, consolidation of refractory ceramics. The Al2O3-20 wt% SiC composite produced by FSPS possesses the highest relative density (~99%), fracture toughness (7.5 MPa m1/2), hardness (20.3 GPa) and wear resistance among all ceramics produced by other SPS-based approaches with dwelling time 10 minutes. The RSPS ceramics hold the highest Young's modulus (390 GPa). Substitution of micron-sized Al2O3 particles by nano alumina does not lead to measurable enhancement of the mechanical properties.  相似文献   

17.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   

18.
《Ceramics International》2017,43(11):8190-8194
Bulk boron carbide (B4C) ceramics was fabricated from a boron and carbon mixture by use of one-step reactive spark plasma sintering (RSPS). It was also demonstrated that preliminary high-energy ball milling (HEBM) of the B+C powder mixture leads to the formation of B/C composite particles with enhanced reactivity. Using these reactive composites in RSPS permits tuning of synthesized B4C ceramic microstructure. Optimization of HEBM + RSPS conditions allows rapid (less than 30 min of SPS) fabrication of B4C ceramics with porosity less than 2%, hardness of ~35 GPa and fracture toughness of ~ 4.5 MPa m 1/2  相似文献   

19.
Spark plasma sintering (SPS) is an advanced sintering technique because of its fast sintering speed and short dwelling time. In this study, TiB2, Y2O3, Al2O3, and different contents of B4C were used as the raw materials to synthesize TiB2-B4C composites ceramics at 1850°C under a uniaxial loading of 48 MPa for 10 min via SPS in vacuum. The influence of different B4C content on the microstructure and mechanical properties of TiB2-B4C composites ceramics are explored. The experimental results show that TiB2-B4C composite ceramic achieves relatively good comprehensive properties and exceptionally excellent flexural strength when the addition amount of B4C reaches 10 wt.%. Its relative density, Vickers hardness, fracture toughness, and flexural strength reach to 99.20%, 24.65 ± .66 GPa, 3.16 MPa·m1/2, 730.65 ± 74.11 MPa, respectively.  相似文献   

20.
The fabrication of dense amorphous Si–B–C–N monoliths is a processing challenge given that it is hard to avoid crystallization at the sintering temperatures needed to attain full density up to 1900°C for conventional hot pressing and SPS methods. We report here successful densification of amorphous Si2BC3N monoliths achieved by heating at 1100°C and 5 GPa. The relationships between microstructure, types of chemical bonding, and mechanical properties were investigated. The strong amorphous 3‐D networks of Si–C, C–B, C‐N (sp3), N‐B (sp3), and C–B–N bonds provide high densities at high applied pressure and thus amorphous Si2BC3N monoliths show high hardness of 29.4 GPa and elastic modulus of 291 GPa. The amorphous structure is lost with crystallization of β‐SiC and BN(C) reducing contributions from Si–C, C‐N (sp3), and C–B–N bond networks thereby decreasing mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号