首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 187 毫秒
1.
Fe2+/H2O2体系内各种自由基在氧化NO中的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
Fe2+/H2O2体系可分解产生多种氧化性自由基, 主要包括O2-·、·OH和HO2·。本文实验研究了O2-·、·OH及HO2·在Fe2+/H2O2体系氧化NO气体过程中的作用。结果表明:在本实验条件下, O2-·对NO气体的氧化作用不明显;·OH及HO2·是该体系氧化NO气体的主要活性物质, 其中·OH的氧化作用更大。加快自由基的生成速率可以增强Fe2+/H2O2体系对NO气体的氧化能力, 但O2的生成速率同时加快。只有少量·OH及HO2·参与NO的氧化, ·OH与HO2·之间的快速反应是Fe2+/H2O2体系氧化NO过程中H2O2利用率低的主要原因。  相似文献   

2.
H2O2利用率低是Fe (Ⅱ)/H2O2氧化体系应用的瓶颈,自由基无效消耗是H2O2利用率低的主要原因之一。本文以烟气中NO氧化为技术背景,实验研究了Fe (Ⅱ)/H2O2体系内H2O2及各种自由基在氧化NO中的作用及自由基无效消耗路径。结果表明:H2O2直接氧化NO能力很弱;虽然·OH及HO2·均可以氧化NO,但·OH的氧化作用大于HO2·。氧化NO同时,绝大多数·OH及HO2·通过两者的快速复合反应而无效消耗,严重影响了H2O2利用率。因此,使用Fe (Ⅱ)/H2O2体系降解污染物过程中,应尽量避免·OH及HO2·两种自由基同时大量存在。  相似文献   

3.
以亚甲基蓝(MB)作为目标污染物,实验研究了Fe2+/H2O2体系降解MB的活性物质,明确了主要反应条件对MB降解的影响特性。结果表明:HO2?没有直接降解MB的能力;Fe2+/H2O2体系对MB的降解能力主要来自于?OH;Fe2+/H2O2体系降解MB可分为快速反应阶段和匀速反应阶段。快速反应阶段的MB降解率随温度升高而下降。体系对MB降解能力随H2O2初始浓度增加呈现先升高后减弱的趋势,本实验条件下,最佳H2O2初始浓度为5 mmol·L-1。体系对MB降解能力随Fe2+初始浓度的增加而单调增加。MB降解速率随MB初始浓度的增加而增加,但MB降解率随其初始浓度呈现先增大后减小的趋势。保证?OH生成速率及其有效利用是提高体系氧化能力及H2O2利用率的关键。  相似文献   

4.
周伟  赵海谦  高继慧  吴少华 《化工学报》2016,67(10):4413-4421
Fe2+的再生直接决定Fenton体系产生的能力。选取羟胺、对苯二酚、对苯醌、亚硫酸钠4种典型添加剂,通过分析不同改性Fenton体系中Fe2+浓度、H2O2浓度、氧化还原电极电位(ORP),揭示了Fe2+再生机制的差异,并进一步分析了不同添加剂与体系中H2O2及·OH的反应情况。结果表明:NH2OH能快速使Fe2+再生,但伴随其消耗,Fe2+浓度不断降低。对苯二酚、对苯醌具有相似效果,两者均可大大强化Fe2+的再生。与NH2OH不同,两者在体系中可迅速建立醌循环,持续还原Fe3+,且以两种物质或其组合均可建立循环。与上述机理均不同,Na2SO3会先与·OH及H2O2反应,因而不能有效还原Fe3+。实验还发现添加剂均存在与·OH的反应,其中Na2SO3还会消耗H2O2。  相似文献   

5.
采用实验方法研究了低成本环境友好型添加剂抗坏血酸(AA)对Fe2+/H2O2体系氧化NO气体及其对体系内H2O2分解的影响,分析了AA对体系氧化NO能力及H2O2分解的影响机制。研究结果表明:AA通过加速Fe3+向Fe2+的转化而促进Fe2+/H2O2体系对NO的氧化。[AA]0:[Fe2+]0对体系氧化NO的能力及H2O2的分解具有重要影响。综合考虑NO氧化脱除量及H2O2消耗量,合理的[AA]0:[Fe2+]0为1/3~1/2。AA的分次添加方式可大幅度提升体系氧化NO气体的能力。研究结果可望为发展基于H2O2为氧化剂的烟气NO绿色氧化技术提供理论基础。  相似文献   

6.
倪金雷  彭若帆  童少平  马淳安 《化工学报》2015,66(10):3950-3956
研究了不同物相TiO2对H2O2/O3氧化效能的影响,目标有机物为羟基自由基探针化合物乙酸。结果表明,在初始pH为7.0和10.0时,加入TiO2反而降低了H2O2/O3的氧化效率,其中锐钛矿TiO2比金红石TiO2的减弱作用更为明显。当初始pH为3.0时,金红石TiO2能显著提高H2O2/O3的氧化效率,但锐钛矿TiO2影响不明显。机理分析表明,H2O2浓度及其衰减速率与乙酸的去除效率有很大的相关性。在pH为7.0和10.0时,两种物相TiO2均能加快H2O2的分解,其中锐钛矿TiO2作用更为显著。此条件下HO2-能有效引发臭氧分解产生羟基自由基,故H2O2过快分解反而降低了乙酸的去除效果。在pH为3.0时,H2O2去质子化反应困难,故O3/H2O2氧化效率极低,H2O2浓度也几乎不变。加入TiO2能明显提高H2O2的分解速率,相比金红石TiO2,锐钛矿TiO2使H2O2在5 min内基本分解完毕,但其对H2O2/O3氧化效率几乎没有影响。饱和臭氧水分解速度的批处理实验也有相似的结果。由此可见,合适引发剂浓度可能是保证臭氧类高级氧化技术较高效率的关键,否则只会导致氧化剂的无效过快分解。利用氯化硝基四氮唑蓝法对比分析了酸性条件下H2O2/O3、锐钛矿TiO2/H2O2/O3和金红石TiO2/H2O2/O3体系产生超氧自由基(·O2-)的量,其大小顺序为:H2O2/O3< 金红石TiO2/H2O2/O3< 锐钛矿TiO2/H2O2/O3,这与前面结果吻合很好。  相似文献   

7.
采用实验方法研究了不同尺寸滴管炉反应器内H2O2热分解氧化NO特性。对比了不同H2O2蒸发条件对NO氧化率的影响规律。分析了气体温度、H2O2溶液浓度、H2O2:NO摩尔比、NO初始浓度及气体流量对NO氧化率的影响。检测了氧化产物并分析了产物的生成路径。结果表明:H2O2的快速蒸发是其热分解氧化NO的前提。减小H2O2液滴尺寸或液膜厚度可加速H2O2蒸发与分解,提高NO氧化率,扩宽NO氧化的温度范围。保证蒸发速率可削弱H2O2浓度对NO氧化率的影响。当H2O2:NO < 10时,NO氧化率随H2O2:NO的增加而增加;当H2O2:NO>10时,NO氧化率几乎不随H2O2:NO变化。H2O2热分解对于较高浓度的NO具有更高的氧化效率。H2O2热分解氧化NO的主要产物为NO2。HO2·直接将NO氧化为NO2,·OH则先将NO转化为HONO,然后进一步氧化为NO2。  相似文献   

8.
田鹏飞  盛依依  孙杨  丁豆豆  徐晶  韩一帆 《化工学报》2018,69(11):4713-4721
非均相Fenton催化反应是降解废水中有机污染物的有效方法。提高H2O2分解生成羟基自由基(·OH)的利用率是提升废水处理效率、降低成本的关键。使用溶胶-凝胶法制备了Cu/Al2O3催化剂,基于·OH的生成效率,通过单因素实验发现反应温度、反应溶液pH及H2O2初始浓度是决定H2O2利用率的主要因素。通过响应面法进行实验设计,分析响应面方程,考察了H2O2初始浓度、溶液pH及反应温度三个因素之间的交互作用及其对反应过程的影响。以H2O2利用率的最大化为目标优化反应条件,当H2O2初始浓度、溶液pH及反应温度分别为707 mg·L-1、5.12及59.4℃时,H2O2利用率可高达0.57,与实验结果相对误差仅为3.5%。所得结果对降低废水处理成本、提高降解效率具有重要的指导作用。  相似文献   

9.
采用碱沉法制备的Si-FeOOH作为非均相类芬顿催化剂,研究其催化降解盐酸四环素废水的效能,考察了催化剂投量、pH、过氧化氢加入量对盐酸四环素降解效能和反应速率的影响。实验结果表明:在催化剂投加量3.0 g·L-1、H2O2投加量9.9 mmol·L-1、pH为3、室温[(25±1)℃]的条件下,盐酸四环素降解率为90%,一级反应速率常数为0.0504 min-1。与催化剂FeOOH相比,类芬顿催化剂Si-FeOOH性能更卓越。同时采用探针化合物正丁醇、苯醌,证明了Si-FeOOH /H2O2 催化体系中的氧化活性种主要为羟基自由基(·OH)和超氧自由基(HO2·), 并推测了其催化反应机理。  相似文献   

10.
随着我国大力推进生态文明建设,废水排放标准不断提高,O3氧化技术由于其较强的氧化性和脱色能力受到广泛关注。文章总结了O3的基本性质及其在水中的分解过程,伴随产生的活性物种(O·-、O2·-、O3·-O3·-、HO2·、HO3·、HO2-等)主要为·OH产生的链式反应传递者,起主要氧化作用的为·OH;阐述了O3分子和·OH氧化有机物的反应历程和特点,即O3分子通过环加成或亲电取代反应与不饱和有机物发生反应,与饱和有机物的反应速率极低;·OH通过攫氢反应氧化饱和有机物、通过羟基加成氧化不饱和有机物,反应速率均极快。文章为O3氧化技术在废水深度处理领域的应用,如适用废水类型、后续处理单元选择、催化剂开发等方面提供了理论支持。  相似文献   

11.
H2O2 used in the photo-Fenton reaction with iron catalyst can accelerate the oxidation of Fe2+ to Fe3+ under UV irradiation and in the dark (in the so called dark Fenton process). It was proved that conversion of phenol under UV irradiation in the presence of H2O2 predominantly produces highly hydrophilic products and catechol, which can accelerate the rate of phenol decomposition. However, while H2O2 under UV irradiation could decompose phenol to highly hydrophilic products and dihydroxybenzenes in a very short time, complete mineralization proceeded rather slowly. When H2O2 is used for phenol decomposition in the presence of TiO2 and Fe–TiO2, decrease of OH radicals formed on the surface of TiO2 and Fe–TiO2 has been observed and photodecomposition of phenol is slowed down. In case of phenol decomposition under UV irradiation on Fe–C–TiO2 photocatalyst in the presence of H2O2, marked acceleration of the decomposition rate is observed due to the photo-Fenton reactions: Fe2+ is likely oxidized to Fe3+, which is then efficiently recycled to Fe2+ by the intermediate products formed during phenol decomposition, such as hydroquinone (HQ) and catechol.  相似文献   

12.
The Electro-Fenton (EF) process is one of the promising advanced oxidation processes (AOPs) for environmental remediation. The H2O2 yield of EF process largely determines its performance on organic pollutants degradation. Conventional Pd-catalytic EF process generates H2O2 via the combination reaction of anodic O2 and cathodic H2. However, the relatively expensive catalyst limits its application. Herein, a hybrid Pd/activated carbon (Pd/AC)-stainless steel mesh (SS) cathode (PACSS) was proposed, which enables more efficient H2O2 generation. It utilizes AC, the support of Pd catalyst, as part of cathode for H2O2 generation via 2-electron anodic O2 reduction, and SS serve as a current distributor. Moreover, H2O2 could be catalytically decomposed upon AC to generate highly reactive ·OH, which avoids the use of Fe2+. Compared with conventional Pd catalyst, H2O2 concentration obtained by PACSS cathode is 248.2% higher, the O2 utilization efficiency was also increased from 3.2% to 10.8%. Within 50 min, 26.3%, 72.5%, and 94.0% H2O2 was decomposed by Pd, AC, and Pd/AC. Fluorescence detection results implied that Pd/AC is effective upon H2O2 activation for OH generation. Finally, iron-free EF process enabled by PACSS cathode was examined to be effective for reactive blue 19 (RB19) degradation. After continuous running for 10 cycles (500 min), the PACSS cathode was still stable for H2O2 generation, H2O2 activation, and RB19 degradation, showing its potential application for organic pollutants degradation without increase in the running cost.  相似文献   

13.
The catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial drug chlorophene has been studied considering four undivided electrolytic cells, where a Pt or boron-doped diamond (BDD) anode and a carbon felt or O2-diffusion cathode have been used. Chlorophene electrolyses have been carried out at pH 3.0 under current control, with 0.05 M Na2SO4 as supporting electrolyte and Fe3+ as catalyst. In these processes the drug is oxidized with hydroxyl radical (OH) formed both at the anode from water oxidation and in the medium from electrochemically generated Fenton's reagent (Fe2+ + H2O2, both of them generated at the cathode). The catalytic behavior of the Fe3+/Fe2+ system mainly depends on the cathode tested. In the cells with an O2-diffusion cathode, H2O2 is largely accumulated and the Fe3+ content remains practically unchanged. Under these conditions, the chlorophene decay is enhanced by increasing the initial Fe3+ concentration, because this leads to a higher quantity of Fe2+ regenerated at the cathode and, subsequently, to a greater OH production from Fenton's reaction. In contrast, when the carbon felt cathode is used, H2O2 is electrogenerated in small extent, whereas Fe2+ is largely accumulated because the regeneration of this ion from Fe3+ reduction at the cathode is much faster than its oxidation to Fe3+ at the anode. In this case, an Fe3+ concentration as low as 0.2 mM is required to obtain the maximum OH generation rate, yielding the quickest chlorophene removal. Chlorophene is poorly mineralized in the Pt/O2 diffusion cell because the final Fe3+–oxalate complexes are difficult to oxidize with OH. These complexes are completely destroyed using a BDD anode at high current thanks to the great amount of OH generated on its surface. Total mineralization is also achieved in the Pt/carbon felt and BDD/carbon felt cells with 0.2 mM Fe3+, because oxalic acid and its Fe2+ complexes are directly oxidized with OH in the medium. Comparing the four cells, the highest oxidizing power regarding total mineralization is attained for the BDD/carbon felt cell at high current due to the simultaneous destruction of oxalic acid at the BDD surface and in the bulk solution.  相似文献   

14.
何媚质  杨鲁伟  张振涛 《化工学报》2017,68(11):4016-4024
CaCl2·6H2O作为一种常见的常温无机水合盐相变材料,由于成本低、易获取、蓄热强而受到广泛的关注。按无水CaCl2与H2O的质量比为1.027:1制备了CaCl2·6H2O,经X射线衍射(XRD)表征其晶体结构;通过添加成核剂SrCl2·6H2O和Ba(OH)2对CaCl2·6H2O改性,发现两者的联合作用可抑制过冷,10次熔化-冷却循环平均过冷度1.07℃。采用差示扫描量热仪(DSC)测定CaCl2·6H2O添加成核剂前后相变潜热,发现潜热由223.54 J·g-1降至160.41 J·g-1;为了扩大CaCl2·6H2O相变温度的范围,通过添加质量分数分别为5%、10%、15%、20%和25%的MgCl2·6H2O,发现相变温度随MgCl2·6H2O质量分数的升高呈线性降低,但不宜超过20%;选取CaCl2·6H2O-20% MgCl2·6H2O二元共晶盐相变储热体系为改性目标,通过添加1% SrCl2·6H2O和0.5% CMC,过冷度降至0.57℃,相变潜热为141.09 J·g-1,低于单独组成盐CaCl2·6H2O的潜热223.54 J·g-1和MgCl2·6H2O的潜热163.35 J·g-1。研究表明,CaCl2·6H2O作为无机相变材料具有显著的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号