首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
为提高粉煤灰对废水中Ni~(2+)的吸附能力,本研究对粉煤灰进行复合改性,制备得到M-B-A·S-FA。通过L_9(3~4)正交优化实验,确定了复合改性粉煤灰吸附含镍废水的较优的工艺条件。结果表明,粉煤灰投加量为4g、pH值为8、吸附时间为40min、吸附温度为30℃时,Ni~(2+)的去除率达到99.1%。该工艺操作简单,去除率高,具有良好的经济效益和社会效益。  相似文献   

2.
常规焦化废水处理过程对难生物降解有机物及NH_3-N的去除效果较差,难以满足处理要求.本文以COD和NH_3-N去除率为指标,研究了石灰石改性粉煤灰吸附处理模拟焦化废水的吸附工艺,将改性粉煤灰吸附、Fenton氧化处理和生物处理组合,寻找简便而有效的焦化废水处理的组合工艺.研究表明,15%石灰石与粉煤灰混合并在900℃煅烧2h得改性粉煤灰,在改性粉煤灰用量为2%、pH值为5~7条件下吸附2 h,可使模拟焦化废水的COD和NH_3-N去除率分别达16%和50%左右.在"改性粉煤灰一次吸附-Fenton氧化-好氧生物过程-改性粉煤灰二次吸附"的组合工艺中,改性粉煤灰不但具有较好的预处理效果,而且还有较好的后处理能力;Fenton氧化所用试剂量少、操作简单(H_2O_2为40 mmol/kg,n(Fe~(2+))/n(H_2O_2)为1:10,pH 3,0.5 h);好氧生物过程是常规生物处理过程,易操作控制.经过组合工艺处理后,可使模拟焦化废水(COD为1450 mg/L,NH_3-N为110 mg/L)的COD和NH_3-N分别下降至45 mg/L和4 mg/L,达国家废水综合排放一级标准(GB8978-1996).  相似文献   

3.
李晓颖 《广东化工》2012,39(16):133-134
文章对改性粉煤灰处理含铬(VI)废水进行了研究。通过实验考察了改性粉煤灰加入量、吸附时间、吸附温度和废水的pH对废水中铬(VI)去除率的影响。实验结果表明,改性粉煤灰处理含铬(Ⅵ)废水的最佳工艺条件为:改性粉煤灰加入量为1.5g,吸附时间为10min,吸附温度为25℃,废水的pH为6.0。在此条件下可使50mL模拟含铬废水中铬(VI)浓度由10mg/L降到0.47mg/L,铬(VI)去除率达95%以上,达到了国家《污水综合排放标准》。  相似文献   

4.
通过对花生壳改性处理模拟含铅废水,增强对铅离子的吸附能力,结果表明,最佳改性方法是花生壳在0.015 mol/L高锰酸钾中搅拌改性4 h。改性前后花生壳的IR图谱发现吸附位点种类没有增加,但是数量明显增加;BET比表面积测试结果表明,改性后花生壳的比表面积增加了78%。在初始条件为50 m L含Pb2+100 mg/L模拟含铅废水时,最佳的吸附条件为0.2 g改性花生壳在含铅废水中吸附2 h,Pb2+除去率为99.48%,较未改性的花生壳提高了42.63%。吸附机理研究表明,采用Lagergren准二级动力学模型和Langmuir等温吸附模型可以准确描述吸附行为,拟合实验数据平衡吸附量为24.93 mg/g,与实验结果一致。  相似文献   

5.
通过对花生壳改性处理模拟含铅废水,增强对铅离子的吸附能力,结果表明,最佳改性方法是花生壳在0.015 mol/L高锰酸钾中搅拌改性4 h。改性前后花生壳的IR图谱发现吸附位点种类没有增加,但是数量明显增加;BET比表面积测试结果表明,改性后花生壳的比表面积增加了78%。在初始条件为50 m L含Pb2+100 mg/L模拟含铅废水时,最佳的吸附条件为0.2 g改性花生壳在含铅废水中吸附2 h,Pb2+除去率为99.48%,较未改性的花生壳提高了42.63%。吸附机理研究表明,采用Lagergren准二级动力学模型和Langmuir等温吸附模型可以准确描述吸附行为,拟合实验数据平衡吸附量为24.93 mg/g,与实验结果一致。  相似文献   

6.
通过比较不同改性剂改性的粉煤灰对印染废水的处理效果,验证了Ca(OHh改性粉煤灰的优越性,并对影响废水处理效果的主要操作条件进行了试验研究,确定了最佳反应条件。研究表明,改性粉煤灰的投加量、pH、吸附时间等对废水的处理效果影响很大。投加量为20g/L、pH=8、吸附时间为30min为最佳操作条件,脱色率、CODcr、SS去除率分别达到98.2%,80.9%,72.3%。改性粉煤灰不但能有效处理印染废水,并且处理后的粉煤灰可以用来制砖或水泥。  相似文献   

7.
李晓颖 《辽宁化工》2013,42(2):112-114
主要对改性粉煤灰处理印染废水进行了研究。通过实验考察了吸附时间、吸附温度、改性粉煤灰加入、改性粉煤灰粒度和废水的pH对废水中色度去除率的影响。实验结果表明,改性粉煤灰处理印染废水的其最佳工艺条件为:吸附时间为70min、吸附温度为30℃、改性粉煤灰加入量为2.4g、改性粉煤灰粒度为100~120目、废水pH为10.0。在此条件下可使100 mL模拟印染废水中色度由600倍降到65倍,色度去除率达89.2%,达到了国家《污水综合排放标准》二级标准。  相似文献   

8.
改性粉煤灰处理含油废水的实验研究   总被引:10,自引:0,他引:10  
采用不同的方法对粉煤灰进行了改性,并用得到的各种改性粉煤灰对含油废水进行了处理。结果表明:在几种改性粉煤灰中,经AlCl3和FeCl3改性处理的粉煤灰除油效果最好。同时探索了改性粉煤灰吸附处理含油废水的最佳工艺条件并得到其等温吸附方程及曲线。实验表明改性粉煤灰除油的最佳工艺条件为:室温,pH=10,搅拌时间为30min,灰水的质量比为1∶10。在该工艺条件下,含油废水经粉煤灰吸附处理后,出水含油量由256mg·L-1降至9·3mg·L-1,除油率为96·36%,达到国家含油废水一级排放标准。  相似文献   

9.
采用氯化锰对膨润土进行改性,并用于深度处理含铅废水,考察了吸附时间、溶液初始pH值及吸附剂投加量对Pb2+吸附率的影响。结果表明在原水中Pb2+的质量浓度为1 mg/L,pH值为6,吸附时间为40 min,吸附剂投加量为20 mg/L,混凝剂投加量为60 mg/L的条件下,Pb2+的吸附率达到95%以上,出水中Pb2+的质量浓度小于0.05 mg/L,满足GB 3838—2002《地表水环境质量标准》Ⅲ类标准的要求。  相似文献   

10.
将粉煤灰改性后对印染废水进行了吸附研究,找到较好的工艺条件与吸附效果。结果表明:对于COD20~150mg/L的印染废水溶液,粉煤灰用量以40g/L为宜,pH值为4.0,脱色率在32%以上。用0.1mol/L硫酸改性粉煤灰吸附印染废水的pH为4.0,投加量为24g/L,脱色率在47%以上,吸附处理后染料废水COD为76mg/L,COD去除率为21%。  相似文献   

11.
采用微波酸活化的方法对粉煤灰进行了改性,并将Fenton试剂氧化和改性后的粉煤灰吸附联合处理焦化废水。考察了Fenton氧化及活化后的粉煤灰吸附过程中的主要因素对降解效果的影响,实验结果表明:在反应温度为60 ℃、初始pH=3、双氧水浓度为100 mmol/L、铁(Ⅱ)质量浓度为0.4 g/L的最佳条件下,加入30 g/L的活化粉煤灰、经过120 min处理,焦化废水的COD去除率可达92%。  相似文献   

12.
酸改性粉煤灰对印染废水处理的实验研究   总被引:3,自引:0,他引:3  
对原始粉煤灰进行了酸性改性,制备了酸改性粉煤灰,并用其对印染废水进行脱色处理。研究了粉煤灰及酸改性粉煤灰的投加量(质量浓度)、反应pH值、反应时间等因素对印染废水脱色效果的影响。实验结果表明:用原始粉煤灰对染料废水进行脱色处理,在粉煤灰投加量为50 g/L,反应时间为40 min,pH值为10的最佳反应条件下,脱色效率为63.45%。用盐酸改性粉煤灰对染料废水进行脱色处理,在酸改性粉煤灰投加量为25 g/L,反应时间为10 min,pH值为10时,最佳脱色效率达到88.73%。  相似文献   

13.
张保柱 《陕西化工》2012,(10):1767-1768,1773
采用盐酸改性粉煤灰为吸附材料,以罗丹明B的模拟废水为吸附对象,研究了改性粉煤灰的投入量、吸附时间、温度及溶液pH值对吸附效果的影响。研究表明,对50 mL浓度2 mg/L的罗丹明B模拟废水,酸改性粉煤灰的最佳吸附条件是:在50℃下,加入0.09 g的粉煤灰,调节pH值为1.77,搅拌30 min。改性粉煤灰对罗丹明B吸附的脱色率可达98.19%。  相似文献   

14.
采用焙烧法对赤泥进行活化处理,将其与粉煤灰、碳酸氢钠和膨润土按照质量比为16∶2∶1∶3制成改性赤泥颗粒,该改性赤泥颗粒破碎率与磨损率之和为0.2%。将其作为吸附剂,采用静态吸附试验方法研究了该改性赤泥颗粒吸附剂对模拟含磷废水除磷的一般规律,在磷的质量浓度为3~100 mg/L条件下,考察了反应时间、初始磷浓度、投加量等因素对改性赤泥颗粒吸附效果的影响,经过计算得出其饱和吸附量。结果表明,改性赤泥颗粒对磷的去除效果在反应8 h后趋于稳定,其最佳投加量为5 g/L,改性赤泥颗粒的饱和吸附量为56.2 mg/g。  相似文献   

15.
王鹤 《山东化工》2014,(5):42-46
研究了粉煤灰改性的工艺条件和静态处理铜冶炼工业废水中Zn2+的效果。试验结果表明:硫酸质量浓度为2mol/L,粉煤灰与硫酸用量比为1︰3.04,在95℃下振荡(振荡频率为170r/min)反应2h时,制得的改性粉煤灰吸附效果最好。在未调节该废水pH值条件下,当改性粉煤灰用量为0.007g/mL,吸附时间为65min,吸附温度为25℃时,Zn2+的去除率为93.17%。处理后的水中Zn2+残留浓度达到了国家污水综合排放标准(GB8978-1996)一级标准。吸附过程符合Freundlich吸附等温式:lgQe=0.4511+5.3584lgCe,热力学参数为:△H=-1.7892J/mol,△S=0.5254J/(K·mol),△G=-162.661J/mol。在相同条件下,未改性粉煤灰对Zn2+的去除率为82.99%,通过硫酸改性使粉煤灰的吸附性能得到较大提高。  相似文献   

16.
以粉煤灰为原料,用混酸酸溶制取改性粉煤灰吸附剂,并处理生活污水。结果表明:最佳酸溶时间为3h,其固体溶出率约25wt%;当改性粉煤灰的用量为100g/L时,吸附效果最佳,COD的吸附率达到75.4%,出水达到《城市污水处理厂污染物排放标准》(GB18918—2002)中的二级标准限值(100mg/L);改性后吸附能力提高了近三倍。  相似文献   

17.
粉煤灰吸附处理含铬废水的试验研究   总被引:3,自引:0,他引:3  
尹宏生  夏怡  刘佳媛 《辽宁化工》2010,39(4):372-375
利用经2 mol/L的硫酸改性的粉煤灰,来研究粉煤灰吸附处理实验室模拟含铬废水。实验结果表明:处理100 mL含六价铬浓度为50 mg/L的废水,调节pH值2~3,投加8 g改性粉煤灰,反应80 min后六价铬的去除率达到90%以上;吸附符合Freundlich等温吸附式。利用粉煤灰吸附处理含铬废水,具有处理效果好,操作简单,运行费用低等优点,因此,粉煤灰可以作为一种有效的吸附剂来处理含铬废水。  相似文献   

18.
十六烷基三甲基溴化铵改性粉煤灰吸附酸性大红染料   总被引:1,自引:0,他引:1  
马俊  梁彦秋  孙小寒 《辽宁化工》2011,40(9):901-903,906
采用十六烷基三甲基溴化铵(HDTMA)对粉煤灰(FA)进行改性,并使用改性后粉煤灰(MFA)吸附酸性大红染料废水。考察了pH值,改性灰的投加量和搅拌时间对酸性大红脱色率的影响,确定了最佳的吸附条件:投加量为0.4 g/50 mL,pH值为2,搅拌时间为90 min。在此条件下,对50 mL浓度为50 mg/L模拟染料废水脱色率最高,可达98%。改性灰对酸性大红染料的吸附规律可用Langmuir吸附等温式描述。通过对粉煤灰和改性灰的比表面积和扫描电镜等表征测定分析可知,HDTMA的加入增大了粉煤灰的比表面积,从而提高吸附性能。  相似文献   

19.
粉煤灰吸附法处理含铬废水   总被引:8,自引:3,他引:8  
通过对含铬废水不同处理方法的比较,寻求一种较佳的处理方法,比较了化学还原沉淀法、吸附法处理含铬废水的机理以及在实际应用中存在的不足和局限性;通过试验用燃煤电厂的粉煤灰作处理剂,在最佳试验条件下,即粉煤灰的投加量为总铬质量的500倍时,调节吸附体系pH值在5.5~7.0,吸附作用时间为40 min时,去除率可达91.6%~95.6%,处理后的废水总铬的质量浓度一般低于1.0 mg/L,可达标排放。本法能较好地处理各类含铬废水,具有适用性广,效果明显,成本低廉,操作简易的特点,同时还具有以废治废,综合利用的特点。  相似文献   

20.
We investigated the utilization of ash and modified ash as a low-cost adsorbent to remove copper ions from aqueous solutions such as wastewater. Batch experiments were conducted to determine the factors affecting adsorption of copper. The influence of pH, adsorbent dose, initial Cu2+ concentration, type of adsorbent and contact time on the adsorption capacity of Cu2+ from aqueous solution by the batch adsorption technique using ash and modified ash as a low-cost adsorbent were investigated. The optimum pH required for maximum adsorption was found to be 5. The results from the sorption process showed that the maximum adsorption rate was obtained at 300 mg/L when a different dosage of fly ash was added into the solution, and it can be concluded that decreasing the initial concentration of copper ion is beneficial to the adsorption capacity of the adsorbent. With the increase of pH value, the removal rate increased. When the pH was 5, the removal rate reached the maximum of over 99%. When initial copper content was 300 mg/L and the pH value was 5, the adsorption capacity of the zeolite Z 4 sample reached 27.904 mg/g. The main removal mechanisms were assumed to be the adsorption at the surface of the fly ash together with the precipitation from the solution. The adsorption equilibrium was achieved at pH 5 between 1 and 4 hours in function of type of adsorbent. A dose of 1: 25 g/mL of adsorbent was sufficient for the optimum removal of copper ions. For all synthesized adsorbents the predominant mechanism can be described by pseudo-second order kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号