首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
最新专利     
<正>高表面粘接性超高相对分子质量聚乙烯纤维的制备本发明涉及一种高表面粘接性超高相对分子质量聚乙烯纤维的制备方法,包括步骤:(1)将表面有机化处理改性后的无机纳米粒子或纳米晶须与萃取剂进行混合,均匀分散,制得复合萃取乳液;(2)萃取去除溶剂后的超高相对分子质量聚乙烯冻胶纤维,置于复合萃取乳液中进行萃取,干燥,拉伸后,制得具有较高表面粘接性能的超高相对分子质量聚乙烯纤维。所制备的超高相对分子  相似文献   

2.
就超高相对分子质量聚乙烯纤维热牵伸过程的拉伸比和牵伸温度对纤维力学性能的影响进行了试验.研究结果表明,拉伸比4.5~6.0和牵伸温度144~150℃是最适合超高相对分子质量聚乙烯纤维热牵伸的关键参数,纤维力学性能可以达到拉伸强度35 cN/dtex和拉伸模量1 100 cN/dtex以上.  相似文献   

3.
冻胶纺是一种新颖纺丝技术,用此法制取超高分子量聚乙烯纤维(UHMW-PE)的工艺过程包括:溶解UHMW-PE在适当的溶剂中,制成半稀溶液,经喷丝孔挤出,以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。从大分子观点出发,在溶液中聚乙烯大分子处于解缠状态并在冻胶原丝中保持这种大分子的解缠状态。拉伸冻胶原丝使大分子链取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强、高模纤维。本讲座分以下五讲:第一讲超高分子量聚乙烯纤维发展概况;第二讲超高分子量聚乙烯冻胶纺工艺过程剖析;第三讲超高分子量聚乙烯的溶解和冻胶纺,第四讲聚乙烯冻胶原丝的萃取和干燥;第五讲聚乙烯冻胶原丝的超拉伸。  相似文献   

4.
黄鑫 《合成纤维》2019,48(11):30-35
原料的选择对超高相对分子质量聚乙烯(UHMWPE)纺丝性能有着重要的影响。选择国内外不同厂家生产的UHMWPE原料进行比较研究,对原料的相对分子质量、粒径及其分布、溶解性以及纺丝性能等一系列性质进行了测试分析。研究结果表明:2#原料粒径分布范围最小,溶胀温度最低,溶解性能最好;预牵伸倍数越高,冻胶纤维除油率越高;1#原料制备的纤维的黏均分子质量降解最严重;2#纤维断裂强度和抗蠕变性最佳;1#纤维的抗蠕变性略优于3#纤维。  相似文献   

5.
纺丝溶液浓度对UHMWPE冻胶纤维萃取及拉伸性能的影响   总被引:2,自引:0,他引:2  
通过冻胶纺丝法制备了纺丝溶液质量分数为8%~16%的超高相对分子质量聚乙烯(UHMWPE)冻胶纤维.研究了不同浓度冻胶纤维的相分离、萃取动力学、结晶性能、热性能和拉伸性能.结果表明:冻胶纤维成形之后的相分离过程开始60 min内较为剧烈,在约2000 min达到相分离平衡;冻胶纤维的萃取除油率随浴比的增大或萃取时间的延...  相似文献   

6.
通过对冻胶纺丝、初步拉伸、再萃取后的超高相对分子质量聚乙烯纤维 (UHMWPE)的拉伸温度、拉伸倍数、热定型温度等的理论分析 ,指出 U HMWPE的拉伸温度应设定在熔点附近 ,确定了拉伸倍数及定型时应满足的拉伸倍数公式 ,热定型温度应低于上一道拉伸温度。  相似文献   

7.
采用双螺杆混炼挤出机溶胀、溶解和挤出纺丝技术制备超高相对分子质量聚乙烯(UHMWPE)冻胶纤维,经热管拉伸得到UHMWPE纤维,研究了冻胶纺丝工艺及后续热拉伸对UHMWPE纤维黏均相对分子质量(M_η)的影响,以及M_η与UHMWPE成品纤维力学性能、热性能、抗蠕变性能及耐磨性能的关系。结果表明:螺杆转速、溶解温度及溶液浓度变化引起的物料高温停留时间和受剪切强度变化对UHMWPE分子降解程度有很大的影响,超倍热拉伸工艺对UHMWPE分子降解影响不大;在UHMWPE溶解均匀的情况下,纤维强度、抗蠕变及耐磨性能随冻胶纤维M_η的增大而增大,且纤维结晶度增加,熔点升高;而UHMWPE溶解条件不佳时,冻胶纤维M_η最高,但纤维表面呈现不均匀凸起,纤维综合性能也变差。  相似文献   

8.
中国专利     
正一种氯化聚乙烯/超高相对分子质量聚乙烯纤维复合材料及其制备本发明涉及高分子材料领域,具体涉及一种氯化聚乙烯/超高相对分子质量聚乙烯纤维复合材料及其制备方法。所述氯化聚乙烯为周期性氯化聚乙烯,本发明的氯化聚乙烯/超高相对分子质量聚乙烯纤维复合材料,在不改变氯化聚乙烯化学结构的情况下,采用超高相对分子质量聚乙烯纤维诱导结晶的方式调节氯化聚乙烯的聚集态结构,实现对氯化聚乙烯晶体结构的调  相似文献   

9.
本发明涉及一种制备碳纳米管/超高摩尔质量聚乙烯复合纤维的方法,所述方法包括如下步骤:①将CNT采用酸性水溶液预处理;②制备包含分散在UHPE纺丝溶剂的溶液中的经预处理的CNT的组合物;③将所得组合物纺成纤维,  相似文献   

10.
专利文摘     
用于制备碳纳米管/超高摩尔质量聚乙烯复合纤维的方法本发明涉及一种制备碳纳米管/超高摩尔质量聚乙烯复合纤维的方法,所述方法包括如下步骤:①将CNT采用酸性水溶液预处理;  相似文献   

11.
高浓度超高相对分子质量聚乙烯冻胶纤维的萃取工艺   总被引:1,自引:1,他引:0  
以超高相对分子质量聚乙烯(UHMWPE)放流冻胶丝为原料,经过切粒机切碎和静置脱油,得到UHMWPE质量分数15%、20%、25%的冻胶颗粒,经纺丝机纺丝制得相应UHMWPE质量分数的冻胶丝。通过对UHMWPE质量分数不同的3种冻胶纺纤维的萃取温度、萃取时间、超声波功率和预拉伸倍数等影响因素进行研究,发现冻胶纤维萃取后残余含油率随萃取温度升高而减少,温度升高至40℃时,残余含油率变化减缓。随着冻胶纤维UHMWPE质量分数的提高,其结构更加紧密,包含在其中的白油溶剂更加难以去除,需要更高的萃取温度或者更长的萃取时间。此外,加大萃取时施加的超声波功率、预拉伸倍数或者加大萃取液新液补充流量,可以明显提高萃取效果。  相似文献   

12.
采用冻胶纺丝-超拉伸技术纺制了超高相对分子质量聚乙烯(UHMWPE)纤维。利用小角X光散射(SAXS)、广角X射线衍射(WAXD)及拉曼光谱等测试手段,研究了拉伸过程中UHMWPE纤维的结晶结构变化。结果表明:随拉伸的进行,纤维非晶区中分子链逐渐参与了结晶,纤维SAXS强度减弱,纤维结构变得紧密规整;纤维结晶长周期及结晶度随拉伸倍数的增加而增大,并趋于平衡,拉伸30倍后,纤维结晶长周期约为50 nm,结晶度约为67.5%;纤维横向晶粒平均尺寸随拉伸倍数的增加而变小,拉伸30倍后,趋于平衡,而纤维晶粒c轴方向的轴向晶粒尺寸随拉伸倍数的增加而变大。  相似文献   

13.
利用正交试验法,对选用超高相对分子质量聚乙烯长丝作为芯丝、芳纶1313短纤维作为外包纤维纺制的芳纶1313/超高相对分子质量聚乙烯包覆纱的纺纱工艺进行了优化,测试了纱线的断裂强力、断裂伸长率、条干CV值。结果表明:后区牵伸倍数为1.05倍,捻因数为330,芯丝张力为0.2 cN时,纱线的成纱质量最好,断裂强力达到2 172.91 N,纱线截面形态及包覆状态较好。  相似文献   

14.
最新专利     
<正>冻胶纺超高相对分子质量聚丙烯纤维的制备及应用本发明涉及一种冻胶纺超高相对分子质量聚丙烯纤维的制备及应用,制备包括:(1)混合超高相对分子质量等规聚丙烯和溶剂,90~190℃溶胀、溶解,配制成聚丙烯溶液;(2)聚丙烯溶液经计量、纺丝组件,在凝固浴中骤冷,形成聚丙烯冻胶丝;(3)冻胶纤维经平衡脱油、萃取、20~80℃热风干燥、多级拉伸,160~200℃热定型后形成聚丙烯纤维成品。该方法工艺简单,无需结晶成核剂,制备的纤维具有高的机械性能,热学性能及低的蠕变率,而且具有高强度模、耐化学腐蚀、使用温度较高等特点。  相似文献   

15.
综述了超高分子量聚乙烯 (UHMWPE)冻胶纤维的制备工艺 ,包括溶解、纺丝、萃取、干燥以及热拉伸等过程 ,并对纤维的应用及开发作了简介。  相似文献   

16.
选择乙烯-醋酸乙烯酯共聚物作表面改性剂,将其溶解在二甲苯中,对超高相对分子质量聚乙烯(UHMWPE)冻胶纤维进行萃取,然后经过多级热拉伸制得改性UHMWPE纤维。对冻胶纤维的萃取动力学、改性前后纤维的表面化学结构、表面粘结性能和力学性能进行了比较。结果表明:加入表面改性剂后,冻胶纤维的萃取除油速率变慢;纤维与树脂基体的粘结强度大大提高;纤维的力学性能略有下降。  相似文献   

17.
以乙烯-醋酸乙烯酯共聚物(EVA)作为共混改性剂,将其溶解在超高相对分子质量聚乙烯(UHMWPE)纺丝溶液中,制得共混改性UHMWPE冻胶纤维;对改性UHMWPE冻胶纤维进行萃取,干燥和热拉伸制得改性UHMWPE纤维;研究了改性前后纤维的结构与性能.结果表明:共混改性后UHMWPE纤维表面引入了极性基团,纤维与树脂基体...  相似文献   

18.
超高相对分子质量聚乙烯的性能与纺丝研究   总被引:1,自引:0,他引:1  
研究了超高相对分子质量聚乙烯(UHMWPE)的性能,采用冻胶纺丝-超倍拉伸技术,对不同UHM-WPE进行纺丝.制得UHMEPW纤维;通过扫描电镜、广角X射线衍射、声速法、强力仪,对UHMWPE纤维的结构与性能进行研究.结果表明:不同UHMWPE的相对分子质量、粒径分布等物理性能对其的溶胀溶解、以及纺制纤维的性能有较大影...  相似文献   

19.
探讨并确定了超高相对分子质量聚乙烯 ( U HMWPE)冻胶纤维的最佳萃取干燥方式。结果表明 ,纤维先在张紧状态下进行超声多次萃取 ,然后再张紧干燥 ,可使纤维除油效果和拉伸性能达到最佳  相似文献   

20.
正本发明提供一种复合型超高分子量聚乙烯纤维及其制备方法。其中,所述方法将玻璃纤维、石墨烯浆料、UHMWPE粉和白油混合后溶胀至熔融状态,再冷却成冻胶丝,最后由冻胶丝制成纤维。本发明公开的方法不仅可以解决在超高分子量聚乙烯的黏弹性高的情况下,玻  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号