首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
壳体密封性对小尺寸弹药快速烤燃响应规律的影响   总被引:4,自引:0,他引:4  
选用钝化RDX原料,对不同密封性的装药壳体进行弹药的快速烤燃试验.利用热电偶测得了弹药壳体不同位置的温度变化,并将自行编制的软件应用到试验时间和温度的同步采集中,分析了不同密封条件下弹药的响应规律.结果表明,软件能够精确采集温度随时间变化的曲线;在相同装药条件下,随壳体密封性的增强,壳体破裂程度越大,破片越碎小,炸药发生快速烤燃反应的剧烈程度也越大.  相似文献   

2.
发射装药热刺激下的易损性响应试验研究   总被引:7,自引:4,他引:3  
从建立发射药及装药易损性响应评价方法的角度,研究了在快速和慢速烤燃条件下,典型发射装药的易损性响应特性和影响因素,分析了其热响应的机理.结果表明,单基药在热刺激下的易损性响应最为剧烈,发射药慢烤时的反应温度与其配方的热感度(5 s爆发点)表现出了一致的规律,从低到高依次为单基、太根和双基药,发射药的高压DSC活化能越高,其热刺激下的易损性响应越强.  相似文献   

3.
利用自行设计的慢速烤燃装置测定了钝化RDX在不同装药密度和约束条件下的慢速烤燃特性.结果表明,装药密度为最大理论密度的80%~94%时,随着装药密度的增大,钝化RDX发生反应的剧烈程度减小;当壳体材料相同时,随着壳体厚度的增加耐烤燃时间增长,但反应的剧烈程度逐渐减弱;当厚度相同时,采用热导性低的材料可以降低慢烤响应的剧...  相似文献   

4.
不同约束条件下钝化RDX的烤燃响应特性   总被引:5,自引:0,他引:5  
以2℃/min的升温速率对带壳的钝化RDX炸药进行慢烤试验,研究了不同约束条件下钝化RDX的烤燃响应特性.结果表明,材料相同时,随着厚度的增加炸药耐烤燃时间随之增长,但反应的剧烈程度逐渐减弱;厚度相同时,耐烤燃特性随材料物理性能的不同发生变化.根据材料力学理论和传热学理论,对所产生的现象进行了分析.结果表明,材料相同时,增加壳体的厚度,可以提高钝化RDX的热安定性;材料不同时,采用热导性低的材料可以提高炸药的热安定性.  相似文献   

5.
物理界面对炸药慢速烤燃特性的影响   总被引:1,自引:0,他引:1  
利用自行设计的烤燃试验装置,在1℃/min的升温速率下对RDX基高能炸药进行了慢速烤燃试验。用FLUENT软件进行了模拟计算,研究了3种物理界面(空气、T-09耐烧蚀隔热涂料和GPS-2硅橡胶涂料)对炸药慢速烤燃特性的影响。结果表明,物理界面是影响炸药慢速烤燃响应特性的重要因素。相同条件下,物理界面为空气时,能增加烤燃弹的烤燃响应温度、响应时间以及烤燃响应的剧烈性;物理界面为惰性材料时,能增加烤燃弹的烤燃响应温度、响应时间,降低烤燃弹烤燃响应的剧烈性。数值计算结果表明,炸药慢速烤燃响应温度及烤燃时间受物理层厚度的影响,物理层厚度为0~5mm时,炸药烤燃响应温度、烤燃时间随着物理层厚度的增加而增大;物理层厚度为2.5mm时,炸药烤燃响应温度、烤燃时间达到最大值,之后随着物理层厚度的增加而减小。  相似文献   

6.
为了获取不同约束方式和强度下HMX基压装含铝炸药慢速烤燃响应特性,以典型超音速钻地/侵爆战斗部为背景,设计了装药长径比为5∶1的缩比烤燃弹;开展了无约束和不同约束强度下HMX基压装含铝炸药慢速烤燃实验;获取了无约束条件下HMX基压装含铝炸药的反应过程,以及不同壳体壁厚(4、10、16和20mm)与端盖螺纹长度(10、12和14mm)时装药反应烈度的变化规律。结果表明,慢速烤燃条件下该HMX基压装含铝炸药反应包括生成气体、端面燃烧、火焰熄灭3个阶段;烤燃弹约束强度影响装药烤燃时间和点火温度,进而影响烤燃弹内部反应压力增长,最终导致不同的反应等级;当螺纹长度(L)为14mm时,壳体厚度(δ)由4mm增加至20mm,反应等级由爆燃发展为爆炸而后降低为燃烧;当壳体壁厚(δ)为10mm时,螺纹连接长度(L)由10mm增加至14mm,烤燃弹反应等级由燃烧转变为爆炸;当壳体壁厚(δ)与等效壳体壁厚(δe)相当时,烤燃弹约束强度较为均匀,有利于反应压力的不断增长,最终导致烤燃弹发生更为剧烈的爆炸反应。  相似文献   

7.
装药尺寸及结构对HTPE推进剂烤燃特性的影响   总被引:2,自引:0,他引:2  
利用自行设计的烤燃实验装置,对HTPE推进剂小尺寸烤燃试样分别进行了升温速率为1、2℃/min的烤燃实验,以此为基础,建立了小尺寸烤燃试样和固体火箭发动机的三维计算模型,利用Fluent软件分别对两者不同升温速率下的烤燃行为进行了数值模拟计算,研究了小尺寸烤燃试样与固体火箭发动机的装药尺寸及结构差异对HTPE推进剂烤燃响应特性的影响。结果表明,HTPE推进剂的烤燃响应时间、响应温度随升温速率的变化趋势与装药尺寸及结构无关,但响应时间和响应温度的绝对值与装药尺寸及结构均有很大关系,升温速率为3.3℃/h(0.055℃/min)时,小尺寸烤燃试样的响应时间为40.3h,响应温度为158℃,而固体火箭发动机响应时间为28.83h,响应温度为120.13℃。推进剂装药尺寸及结构对烤燃点火位置有明显影响,进而影响到烤燃速度范畴的区分,小尺寸烤燃试样慢烤升温速率不大于2℃/min,而固体火箭发动机慢烤升温速率为小于0.5℃/min。因此,对快速、慢速烤燃的严格划分,必须结合装药尺寸、装药结构及推进剂种类等因素进行。升温速率对固体火箭发动机存在热积累临界位置效应,本研究条件下影响热积累临界位置的升温速率为0.5℃/min。  相似文献   

8.
为研究火炮多发连续射击情况下模块装药滞留膛内的热安全性问题,建立了膛内模块装药二维非稳态烤燃模型,采用FLUENT软件对模块装药在膛内的烤燃过程进行了数值模拟,分析了3种射击工况下多发连续射击后继续装填模块装药留膛时的烤燃特性。结果表明,常温下不同射击工况对膛内模块装药的烤燃响应时间影响较大,对烤燃起始响应位置影响较小,对烤燃响应温度几乎无影响;采用5发/min射速射击32发后模块装药的烤燃响应时间为399.2s,采用1发/min射速射击43发和采用混合射速射击41发后模块装药的烤燃响应时间分别为176.4s和179.6s。3种射击工况下均是靠近模块盒右侧端面处的单基药最先着火,并形成环形烤燃响应区,单基药的烤燃响应温度分别为459.2、462.7和460.0K。  相似文献   

9.
为研究RDX基PBX-9炸药的热响应规律,分别采用1.5、3.0、4.5、8.0℃/min的升温速率对PBX-9炸药药柱进行了烤燃试验。用热电偶测试了药柱表面的温度变化,通过测量冲击波超压和收集试验弹残骸,分析了药柱的反应程度,获得了不同升温速率下的响应规律。结果表明,升温速率为1.5~8.0℃/min时,对PBX-9炸药的响应温度没有明显的影响,试验弹响应时药柱温度约为140~150℃,均为燃烧反应。烤燃过程中黏结剂的分解对PBX-9炸药响应特性影响较大,使其反应程度一致。采用FLUENT软件对该烤燃试验过程进行了数值模拟,得到PBX-9炸药反应的活化能和指前因子分别为184.2×103J/mol和7.24×1018s-1。  相似文献   

10.
为了研究RDX基炸药在不同烤燃温度下的热分解规律,采用恒温控制技术,以1℃/min的升温速率对RDX基炸药进行了烤燃试验。利用FLUENT软件对不同温度下的热爆炸延滞期进行了数值模拟。结果表明,烤燃温度对RDX基炸药的热分解有重要影响,当恒定温度达到175℃时,RDX基炸药的分解速率发生明显变化。数值模拟结果表明,当以1℃/min的升温速率加热至178℃恒定660min时,RDX基炸药发生了自加热反应,最终导致点火。RDX基炸药发生自加热反应的临界温度为178℃。  相似文献   

11.
采用喷射细化法和滴加法,制备了3种粒度的黑素今(RDX)粉末.采用激光粒度仪、比表面积分析仪和扫描电子显微镜对样品进行了表征,对其火焰感度、慢烤热感度及热分解特性进行了测试,其中用50%的发火高度表示其火焰感度,用爆发点的温度表示其慢烤热感度.结果表明,随着RDX粒度的减小,RDX的火焰感度和慢烤热感度均逐步升高.从理...  相似文献   

12.
采用自行设计的烤燃试验装置,以1.0℃/min的升温速率并采用恒温控制技术对聚黑(JH)炸药进行了不同温度下的50min恒温烤燃试验;用FLUENT软件对不同升温速率和装药尺寸的聚黑炸药热起爆临界温度进行了数值计算。结果表明,炸药存在一个热起爆临界温度,炸药置于恒定高温环境中比慢速烤燃更危险,发生反应的环境温度更低,响应更剧烈。随着升温速率的增加,药柱的热起爆临界温度缓慢升高,当升温速率大于10.0℃/min时,热起爆临界温度均为197℃。药柱的长径比相同时,随着药柱尺寸的增加,聚黑炸药的热起爆临界温度逐渐降低,当药柱尺寸增加到一定值时,药柱尺寸对聚黑炸药热起爆临界温度的影响将减弱。  相似文献   

13.
低易损性PBX炸药烤燃试验方法研究   总被引:2,自引:0,他引:2  
烤燃试验是评估和检验炸药易损性能的重要试验之一。通过分析炸药的安全可靠性及战场生存能力阐明了PBX炸药烤燃试验的意义和重要性,论述了PBX炸药烤燃试验国内外的发展现状,介绍了烤燃试验的方法,分析了影响烤燃试验结果的主要因素。  相似文献   

14.
军民两用乳化炸药的制备   总被引:1,自引:0,他引:1  
为解决战争期间军用炸药短缺的问题,以民爆行业生产的乳化炸药为研究对象,通过添加乙二胺二硝酸盐(EDD)、钝化RDX等高能组分,增加其能量水平;通过高效乳化剂丙烯酰化Span 80及微乳化技术进一步提高乳化炸药的稳定性,形成高能乳化炸药。结果表明,当EDD和钝化RDX的质量分数均为10%时,乳化炸药的装药密度为1.57g/cm3,爆速为6 120m/s,威力(TNT当量)136%,爆热4 910kJ/kg。  相似文献   

15.
为了获得粒径分布均匀的细化RDX,在超重力反应器中,以丙酮-水作为溶剂-反溶剂重结晶体系,添加聚乙烯吡咯烷酮(PVP)作为表面活性剂,制备了亚微米级RDX。研究了RDX溶液浓度、PVP含量以及超重力反应器转速对RDX形貌和尺寸的影响,获得最优工艺条件,利用SEM、XRD和FT-IR对其形貌、晶体结构和分子结构进行了表征,并采用DSC研究了RDX的热分解过程。结果表明,在RDX溶液浓度为0.04g/mL、PVP浓度为0.2g/L、超重力反应器转速为1500r/min时,制备了平均粒径为0.54μm的亚微米级RDX,细化处理未改变RDX的晶型;与原料RDX相比,亚微米级RDX的分解峰温提前了1.2℃,热分解活化能从180~250kJ/mol降至约150kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号