首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Thermal analysis of alternative diesel fuels from vegetable oils   总被引:10,自引:6,他引:4  
The relatively poor cold-flow properties of monoalkyl esters of vegetable oils and animal fats (biodiesel) present a major obstacle to their development as alternative fuels and extenders for combustion in direct injection compressionignition (diesel) engines. In this work, differential scanning calorimetry (DSC) heating and cooling curves of methyl soyate (SME), methyl tallowate (TME), SME/TME admixtures, and winterized SME were analyzed. Completion of melt, crystallization onset (Onset), and other temperatures corresponding to melting and freezing peaks were correlated to predict cloud point (CP), pour point (PP), cold filter plugging point (CFPP), and low-temperature flow test (LTFT) data. Effects of treating methyl esters with cold-flow improvers were examined. Low-temperature flow properties of biodiesel may be accurately inferred from subambient DSC analyses of high-melting or freezing (β-form) peaks. The temperature of maximal heat flow for freezing peaks gave the best accuracy for predicting CP, PP, and CFPP, while freezing point gave the best accuracy for predicting LTFT. Onset also gave good correlations with respect to predicting PP, CFPP, and LTFT. Cooling scan parameters were more reliable than heating scan parameters. Presented at the 88th American Oil Chemists’ Society’s Annual Meeting & Expo, Seattle, Washington, May 11–14, 1997.  相似文献   

2.
Biodiesel is an alternative fuel composed of mono‐alkyl fatty acid esters made from the transesterification of plant oils or animal fats with methanol or ethanol. After conversion, biodiesel may contain trace concentrations of unconverted monoacylglycerols (MAG). These MAG have low solubility in biodiesel and may form solid residues when stored at cold temperatures. The present study evaluates the measurement of kinematic viscosity (ν) and cold filter plugging point (CFPP)‐time to filter (Δt) as parameters that predict the temperature where small concentrations of MAG may lead to formation of solids or other phase transitions that restrict the flow of soybean oil fatty acid methyl esters (SME) through filters and fuel lines. Mixtures of SME doped with MAG were prepared and ν and Δt were measured as the temperature decreased from 20 to below 0 °C. Results showed a correlation between ν and Δt that held for neat SME (SME without added MAG) and SME‐MAG mixtures as the temperature decreased to the threshold temperature (Tth). Sharp increases in Δt disrupted the correlation as temperature decreased below Tth. Furthermore, Tth generally increased as added MAG concentration increased in the mixtures.  相似文献   

3.
Biodiesel is an alternative diesel fuel derived mainly from the transesterification of plant oils with methanol or ethanol. This fuel is generally made from commodity oils such as canola, palm or soybean and has a number of properties that make it compatible in compression‐ignition engines. Despite its many advantages, biodiesel has poor cold flow properties that may impact its deployment during cooler months in moderate temperature climates. This work is a study on the use of skeletally branched‐chain‐fatty acid methyl esters (BC‐FAME) as additives and diluents to decrease the cloud point (CP) and pour point (PP) of biodiesel. Two BC‐FAME, methyl iso‐oleate and methyl iso‐stearate isomers (Me iso‐C18:1 and Me iso‐C18:0), were tested in mixtures with fatty acid methyl esters (FAME) of canola, palm and soybean oil (CaME, PME and SME). Results showed that mixing linear FAME with up to 2 mass% BC‐FAME did not greatly affect CP, PP or kinematic viscosity (ν) relative to the unmixed biodiesel fuels. In contrast, higher concentrations of BC‐FAME, namely between 17 and 39 mass%, significantly improved CP and PP without raising ν in excess of limits in the biodiesel fuel standard specification ASTM D 6751. Furthermore, it is shown that biodiesel/Me iso‐C18:0 mixtures matched or exceeded the performance of biodiesel/Me iso‐C18:1 mixtures in terms of decreasing CP and PP under certain conditions. This was taken as evidence that additives or diluents with chemical structures based on long‐chain saturated chains may be more effective at reducing the cold flow properties of mixtures with biodiesel than structures based on long‐chain unsaturated chains.  相似文献   

4.
Shape memory alloys (SMAs) are well known for their unique shape memory effect (SME) and superelasticity (SE) behavior. The SME and SE have been extensively investigated in past decades due to their potential use in many applications, especially for smart materials. The unique effects of the SME and SE originate from martensitic transformation and its reverse transformation. Apart from the SME and SE, SMAs also exhibit a unique property of memorizing the point of interruption of martensite to parent phase transformation. If a reverse transformation of a SMA is arrested at a temperature between reverse transformation start temperature (A s) and reverse transformation finish temperature (A f), a kinetic stop will appear in the next complete transformation cycle. The kinetic stop temperature is a ‘memory’ of the previous arrested temperature. This unique phenomenon in SMAs is called temperature memory effect (TME). The TME can be wiped out by heating the SMAs to a temperature higher than A f. The TME is a specific characteristic of the SMAs, which can be observed in TiNi-based and Cu-based alloys. TME can also occur in the R-phase transformation. However, the TME in the R-phase transformation is much weaker than that in the martensite to parent transformation. The decrease of elastic energy after incomplete cycle on heating procedure and the motion of domain walls have significant contributions to the TME. In this paper, the TME in the TiNi-based and Cu-based alloys including wires, slabs and films is characterized by electronic-resistance, elongation and DSC methods. The mechanism of the TME is discussed.  相似文献   

5.
This work explores near-term approaches for improving the low-temperature properties of triglyceride oil-derived fuels for direct-injection compression-ignition (diesel) engines. Methyl esters from transesterified soybean oil were evaluated as a neat fuel and in blends with petroleum middle distillates. Winterization showed that the cloud point (CP) of methyl soyate may be reduced to −16°C. Twelve cold-flow additives marketed for distillates were tested by standard petroleum methodologies, including CP, pour point (PP), kinematic viscosity, cold filter plugging point (CFPP), and low-temperature flow test (LTFT). Results showed that additive treatment significantly improves the PP of distillate/methyl ester blends; however, additives do not greatly affect CP or viscosity. Both CFPP and LTFT were nearly linear functions of CP, a result that compares well with earlier studies with untreated distillate/methyl ester blends. In particular, additives proved capable of reducing LTFT of neart methyl esters by 5–6°C. This work supports earlier research on the low-temperature properties; that is, approaches for improving the cold flow of methyl ester-based diesel fuels should continue to focus on reducing CP.  相似文献   

6.
LiNi1-y MyO2 (M = Ga, In and Tl, y = 0.010, 0.025 and 0.050) with small y were synthesized by the combustion method by calcining in an O2 stream at 750 °C for 36 h. XRD analyses, SEM observation and measurement of the variation of discharge capacity with the number of cycles were carried out. All the samples had the Rm structure and LiNi1-y In y O2 contained LiInO2 phase as an impurity. Among LiNi1-y Ga y O2 the sample with y = 0.025 had a relatively large first discharge capacity (172.2 mAh g−1) and relatively good cycling performance (discharge capacity 140.3 mAh g−1 at n = 20). For LiNi0.975M0.025O2 (M = Ga, In and Tl), the first discharge capacity decreased in the order of the substituted element Ga, In and Tl. The variations of cation mixing and hexagonal ordering with the substituted element (decrease in I003/I104 and increase in R-factor from M = Ga through M = Tl) are considered to lead to the behavior of the first discharge capacity with the substituted element. LiNi0.975Tl0.025O2 had the smallest degradation rate of the discharge capacity.  相似文献   

7.
It is often desirable to identify a concrete admixture uniquely before its use to avoid adverse reactions. Methods such as ir or uv spectroscopy only broadly classify the type of admixture while chemical analysis is difficult and results are often inconclusive, especially for admixtures containing lignosulphonates. The use of DTA under 250 kPa of O2 provides a technique for identifying admixtures. Each admixture gives an unique pattern of exothermic peaks thus enabling its identification provided a known sample is available. Admixtures containing salts of hydroxycarboxylic acids show exotherms up to 700°C while those with free acids or sugars shown only exotherms in the range 200–400°C.  相似文献   

8.
(Yb2O3)x(Dy2O3)y(Bi2O3)1?x?y (0.04≤x+y≤0.20) powders (xYbyDSB) were synthesized by modified sol‐gel Pecchini method. The powders were characterized for structural, surface morphological, thermal, and electrical properties and power density measurements by means of X‐ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis/thermal gravimetry (DTA/TG), and impedance spectroscopy, respectively. Lattice parameters and crystalline size of δphase of Yb2O3‐ and Dy2O3‐doped Bi2O3 samples were calculated from the X‐ray diffraction data. Surface and grain properties of the related phases were determined by SEM analysis. In the investigated system, the maximum electrical conductivity was observed as σ=0.954 S cm?1 for 6% mol Yb2O3 and 6% mol Dy2O3 at 800°C among all δ‐YbDSB systems. Cathode supported electrochemical cell was fabricated and 6Yb6DSB was used as the electrolyte. Maximum power density of single cell with an active area of 1.5 cm2 is 72.50 mW/cm2 at 700°C.  相似文献   

9.
The melting point is one of the most important physical properties of a chemical compound and it plays a significant role in determining possible applications. For fatty acid esters the melting point is essential for a variety of food and non-food applications, the latter including biodiesel and its cold-flow properties. In this work, the melting points of fatty acids and esters (methyl, ethyl, propyl, butyl) in the C8–C24 range were determined by differential scanning calorimetry (DSC), many of which for the first time. Data for triacylglycerols as well as ricinoleic acid and its methyl and ethyl esters were also acquired. For some compounds whose melting points have been previously reported, data discrepancies exist and a comprehensive determination by DSC has not been available. Variations in the present data up to several °C compared to data in prior literature were observed. The melting points of some methyl-branched iso- and anteiso-acids and esters were also determined. Previously unreported systematic effects of compound structure on melting point are presented, including those for ω-9 monounsaturated fatty acids and esters as well as for methyl-branched iso and anteiso fatty acids and esters. The melting point of a pure fatty acid or ester as determined by DSC can vary up to approximately 1 °C. Other thermal data, including heat flow and melting onset temperatures are briefly discussed. Product names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

10.
Elastic and mechanical properties such as Young's modulus E, Poisson's ratio ν, Debye temperature θD, Vickers hardness Hv, fracture toughness Kc, and fracture surface energies γf of yCuOx·(100−y)P2O5 glasses (y= 45, 50, 55) with different copper valence states, i.e., R(Cu+) = Cu+/(Cu++ Cu2+), at room temperature (humidity 64%) have been examined. The following features have been found: (1) the glass transition temperature (218–434°C), Hv (2.7–4.4 GPa), E (50.6–78.2 GPa), and θD (358–434 K) decrease largely with increasing R(Cu+); (2) the mean atomic volume, Kc (0.56–1.14 MPa·m1/2), and γf (1.9–11.2 J·m−2) tend to increase with increasing R(Cu+); (3) 50CuOx·50P2O5 glasses with R(Cu+) = 0.42 and 0.55 have a high resistance against crack formation in Vickers indentation tests and no crack is observed in the 45CuOx·55P2O5 glass with R(Cu+) = 0.57 under an applied load of about 98 N. The results demonstrate that elastic and mechanical properties of yCuOx·(100−y)P2O5 glasses depend strongly on the copper valence state and the CuOx/P2O5 ratio. The unusal mechanical and elastic properties of copper phosphate glasses are well explained qualitatively by considering unique oxygen coordination and bonding states of Cu+ ions, i.e., lower coordination number and more covalent bonding compared with Cu2+ ions.  相似文献   

11.
0.725BiFe1?xScxO3–0.275BaTiO3 + y mol% MnO2 multiferroic ceramics were fabricated by a conventional ceramic technique and the effects of Sc doping and sintering temperature on microstructure, multiferroic, and piezoelectric properties of the ceramics were studied. The ceramics can be well sintered at the wide low sintering temperature range 930°C–990°C and possess a pure perovskite structure. The ceramics with x/y = 0.01–0.02/1.0 sintered at 960°C possess high resistivity (~2 × 109 Ω·cm), strong ferroelectricity (Pr = 19.1–20.4 μm/cm2), good piezoelectric properties (d33 = 127–128 pC/N, kp = 36.6%–36.9%), and very high Curie temperature (618°C–636°C). The increase in sintering temperature improves the densification, electric insulation, ferroelectric, and piezoelectric properties of the ceramics. A small amount of Sc doping (x ≤ 0.04) and the increase in the sintering temperature significantly enhance the ferromagnetic properties of the ceramics. Improved ferromagnetism with remnant magnetization Mr of 0.059 and 0.10 emu/g and coercive field Hc of 2.51 and 2.76 kOe are obtained in the ceramics with x/y = 0.04/1.0 (sintered at 960°C) and 0.02/1.0 (sintered at 1050°C), respectively. Because of the high TC (636°C), the ceramic with x/y = 0.02/1.0 shows good temperature stability of piezoelectric properties. Our results also show that the addition of MnO2 is essential to obtain the ceramics with good electrical properties and electric insulation.  相似文献   

12.
Due to the presence of non‐sulfonated residual alkyl ether (AE), sodium alkyl ether sulfonate (SAES) may exhibit clear point‐cloud point solubilization behavior in brine. Accordingly, the effect of temperature on the compatibility of iC17EOxS (x = 7 and 10), nC17EO10S, along with their analogous nonionic surfactants iC17EOxH (x = 7 and 10) and nC17EO10, in addition to iC9EO14 in brine has been investigated. Depending on their molecular structures, these surfactants exhibited concentration‐dependent clear point and cloud point solubilization behavior. The cloud point was associated with the AE component whereas the clear point was attributed to the sulfonated one. Interestingly, an increase in the cloud point of the nonionic component with respect to the corresponding nonionic AE (100 % active) was observed. Adding iC9EO14 (100 % active) to iC17EO7S (xan = 0.0–0.362) resulted in a significant decrease in the clear point of iC17EO7S from above 100 °C to below 22 °C with a concomitant increase in iC17EO7/iC9EO14 mixture cloud point from 68 °C. (xan = 0) to 72 °C (xan = 0.325). This relatively modest increase by 4 °C was attributed to the interrelationship of different competitive mechanisms, namely an increase in mixed micelle charge with increasing xan, the dehydration of OE groups via ion (SO3?)‐dipole (O → CH2) interactions, and possible shielding of SO3? groups by iC9EO14 nearby extended EO groups. To the best of our knowledge, this is the first instance where dual anionic‐nonionic solubilization behavior of SAES in brine characterized by high salinity and hardness is being reported.  相似文献   

13.
The classical autocorrelation function may not be an effective and informative means in revealing the dependence features of a binary time series {yt}. Recently, the autopersistence functions defined as APF0(k) = P(yt+k = 1 | yt = 0) and APF1(k) = P(yt+k = 1 | yt = 1), k = 1, 2,…, have been proposed as alternatives to the autocorrelation function for binary time series. In this article we consider the theoretical autopersistence functions and their natural sample analogues, the autopersistence graphs, under a binary autoregressive model framework. Some properties of the autopersistence functions and the asymptotic properties of the autopersistence graphs are discussed. The results have potential application in the modelling of binary time series.  相似文献   

14.
FAME of lard, beef tallow, and chicken fat were prepared by base-catalyzed transesterification for use as biodiesel fuels. Selected fuel properties of the neat fat-derived methyl esters (B100) were determined and found to meet ASTM specifications. The cold-flow properties, lubricity, and oxidative stability of the B100 fat-derived fuels also were measured. In general, the cold-flow properties of the fat-based fuels were less desirable than those of soy-based biodiesel, but the lubricity and oxidative stability of the fat-based biodiesels were comparable to or better than soy-based biodiesel. Nitrogen oxide (NOx) emission tests also were conducted with the animal fat-derived esters and compared with soybean oil biodiesel as 20 vol% blends (B20) in petroleum diesel. The data indicated that the three animal fat-based B20 fuels had lower NOx emission levels (3.2–6.2%) than did the soy-based B20 fuel.  相似文献   

15.
The oxygen reduction reaction (ORR) on RuxWySez is of great importance in the development of a novel cathode electrode in a polymer electrolyte membrane fuel cell (PEMFC) technology. The RuxWySez electrocatalyst was synthesised in an organic solvent for 3 h. The powder was characterised by transmission electron microscopy (TEM), and powder X‐ray diffraction (XRD). The electrocatalyst consisted of agglomerates of nanometric size (∼50–150 nm) particles. In the electrochemical studies, rotating disc electrode (RDE) and rotating ring‐disc electrode (RRDE) techniques were used to determine the oxygen reduction kinetics in 0.5 M H2SO4. The kinetic studies include the determination of Tafel slope (112 mV dec–1), exchange current density at 25 °C (1.48 × 10–4 mA cm–2) and the apparent activation energy of the oxygen reaction (52.1 � 0.4 kJ mol–1). Analysis of the data shows a multi‐electron charge transfer process to water formation, with 2% H2O2 production. A single PEMFC with the RuxWySez cathode catalysts generated a power density of 180 mW cm–2. Performance achieved with a loading of 1.4 mg cm–2 of a 40 wt% RuxWySez and 60 wt% carbon Vulcan (i.e. 0.56 mg cm–2 of pure RuxWySez). Single PEMFC working was obtained with hydrogen and oxygen at 80 °C with 30 psi.  相似文献   

16.
Carbonates are a class of compounds that have recently found increasing interest in commercial applications owing to their physical properties and relatively straightforward synthesis. In this work, physical and fuel properties of five straight-chain C17–39 and three branched C17–33 oleochemical carbonates were investigated. These properties included cetane number (CN), low-temperature properties, (kinematic) viscosity, lubricity, and surface tension. The carbonates studied had CN ranging from 47 to 107 depending on carbon chain length and branching. For the same number of carbons, the CN of carbonates were lower than those of FA alkyl esters owing to interruption of the CH2 chain by the carbonate moiety. Kinematic viscosities at 40°C ranged from 4.9 to 22.6 mm2/s whereas m.p. ranged from +3 to below −50°C depending on the carbonate structure. High-frequency reciprocating rig testing showed the neat carbonates to have acceptable lubricity that improved as chain length increased. Finally, the carbonate's ability to influence cold-flow properties in biodiesel (methyl soyate) and lubricity in low-lubricity ultra-low sulfur diesel were examined. The carbonates studied did not significantly affect cold flow or lubricity properties at concentrations up to 10,000 ppm (1 wt%). The properties of the carbonates resemble those of fatty alkyl esters with similar trends resulting from compound structure.  相似文献   

17.
Here we have investigated the bonding conditions and mechanism for glass-to-glass anodic bonding in indium-tin-oxide (ITO)-coated glass using an Al/Cr composite thin film as an interlayer prepared by RF magnetron sputtering. The experimental results show that the bond strength increases with increasing the bonding temperature, bonding voltage, and Al film thickness. The optimum experimental parameters in the anodic bonding were found to be an Al film thickness of 300 nm, bonding temperature of 300°C, and bonding voltage of 700 V. Oxygen content within the bonded interphase increases and aluminum content decreases on increasing both the temperature and voltage during the bonding process. According to EDS analysis results, the main bond mechanism is proposed to be due to the following chemical reactions: 4Na+ + 4e? → 4Na, xAl + yO2? → Al x O y + 6e?, x = 2, y = 3.  相似文献   

18.
The objective of this work was to study the two‐step acid base homogenous catalyzed transesterification of olive pomace oil, with the ultimate purpose of producing biodiesel under mild reaction conditions by optimizing the process. Optimization of the experimental procedure was conducted by a factorial design of 23 under the acidic pretreatment step and during the basic transesterification. The optimal production of methyl esters (97.8%) was achieved for the experimental conditions H2SO4 = 20 wt%/CH3OH = 35:1/T = 40°C and KOH = 0.6+ fatty acid value /CH3OH = 9:1/ T = 60°C, in the acidic and basic stage of the process, respectively. Finally, to properly assess the quality of the biofuel produced, it was tested for all the European Standard properties.  相似文献   

19.
Co-polyphosphazenes containing anchored organometallic fragments are useful precursors for nanostructured metallic materials. Pyrolysis in air at 800°C yields metallic nanoparticles of the type, M°/M x O y /M z (P x O y )/P4O7, depending on the metal used; i.e., M° when the metal is a noble metal, metal oxide when the metal is Cr, W and Ru, metallic pyrophosphate when M = Mn and Fe. The organic spacer of the polyphosphazene influences strongly the morphology of the pyrolytic product. The mechanism of formation of the nanostructured materials involves carbonization of the organic matter, which produces holes where the nanoparticles are grown. Reaction of the phosphorus polymeric chain with O2 yield phosphorus oxide units, which act as a P4O7 matrix to stabilize the nanoparticles and/or P x O y n for the formation of metallic pyrophosphates. The method appears to be a general and versatile new route to metallic nanostructured materials. Dedicated to Professor Harry Allcock for his pioneering and persevering work on Polyphosphazene and their projection in another field as materials and recently nanomaterials.  相似文献   

20.
Although a rhombohedral‐tetragonal (R‐T) phase boundary is known to substantially enhance the piezoelectric properties of potassium‐sodium niobate ceramics, the structural evolution of the R‐T phase boundary itself is still unclear. In this work, the structural evolution of R‐T phase boundary from ?150°C to 200°C is investigated in (0.99?x)K0.5Na0.5Nb1?ySbyO3–0.01CaSnO3xBi0.5K0.5HfO3 (where x = 0‐0.05 with y = 0.035, and y = 0‐0.07 with x = 0.03) ceramics. Through temperature‐dependent powder X‐ray diffraction (XRD) patterns and Raman spectra, the structural evolution was determined to be Rhombohedral (R, <?125°C)→Rhombohedral + Orthorhombic (R + O, ?125°C to 0°C)→Rhombohedral + Tetragonal (R + T, 0 °C to 150°C)→dominating Tetragonal (T, 200°C to Curie temperature (TC)) → Cubic (C, >TC). In addition, the enhanced electrical properties (e.g., a direct piezoelectric coefficient (d33) of ~450 ± 5 pC/N, a conversion piezoelectric coefficient () of ~580 ± 5 pm/V, an electromechanical coupling factor (kp) of ~0.50 ± 0.02, and TC~250°C), fatigue‐free behavior, and good thermal stability were exhibited by the ceramics possessing the R‐T phase boundary. This work improves understanding of the physical mechanism behind the R‐T phase boundary in KNN‐based ceramics and is an important step toward their adoption in practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号