首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Almost fully-dense B4C–SiC–TiB2 composites with a high combination of strength and toughness were prepared through in situ reactive spark plasma sintering using B4C and TiSi2 as raw materials. The densification, microstructure, mechanical properties, reaction, and toughening mechanisms were explored. TiSi2 was confirmed as a reactive sintering additive to promote densification via transient liquid-phase sintering. Specifically, Si formed via the reaction between B4C and TiSi2 that served as a transient component contributed to densification when it melted and then reacted with C to yield more SiC. Toughening mechanisms, including crack deflection, branching and bridging, could be observed due to the residual stresses induced by the thermoelastic mismatches. Particularly, the introduced SiC–TiB2 agglomerates composed of interlocked SiC and TiB2 played a critical role in improving toughness. Accordingly, the B4C–SiC–TiB2 composite created with B4C-16 wt% TiSi2 achieved excellent mechanical performance, containing a Vickers hardness of 33.5 GPa, a flexural strength of 608.7 MPa and a fracture toughness of 6.43 MPa m1/2.  相似文献   

2.
Boron carbide (B4C) ceramic composites with excellent mechanical properties were fabricated by hot-pressing using B4C, silicon carbide (SiC), titanium boride (TiB2), and magnesium aluminum silicate (MAS) as raw materials. The influences of SiC and TiB2 content on the microstructural evolution and mechanical properties of the composites were systematically investigated. The mechanism by which MAS promotes the sintering process of composites was also investigated. MAS exists in composites in the form of amorphous phase. It can effectively remove the oxide layer from the surface of ceramic particles during the high temperature sintering process. The typical values of relative density, hardness, bending strength, and fracture toughness of B4C–SiC–TiB2 composites are 99.6%, 32.61 GPa, 434 MPa, and 6.20 MPa m1/2, respectively. Based on the microstructure observations and finite element modeling, the operative toughening mechanism is mainly attributed to the crack deflection along the grain boundary, which results from the residual stress field generated by the thermal expansion mismatch between B4C and TiB2 phase.  相似文献   

3.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   

4.
Spark plasma sintering (SPS) is an advanced sintering technique because of its fast sintering speed and short dwelling time. In this study, TiB2, Y2O3, Al2O3, and different contents of B4C were used as the raw materials to synthesize TiB2-B4C composites ceramics at 1850°C under a uniaxial loading of 48 MPa for 10 min via SPS in vacuum. The influence of different B4C content on the microstructure and mechanical properties of TiB2-B4C composites ceramics are explored. The experimental results show that TiB2-B4C composite ceramic achieves relatively good comprehensive properties and exceptionally excellent flexural strength when the addition amount of B4C reaches 10 wt.%. Its relative density, Vickers hardness, fracture toughness, and flexural strength reach to 99.20%, 24.65 ± .66 GPa, 3.16 MPa·m1/2, 730.65 ± 74.11 MPa, respectively.  相似文献   

5.
Dense Ti3AlC2/TiB2 composites were successfully fabricated from B4C/TiC/Ti/Al powders by spark plasma sintering (SPS). The microstructure, flexural strength and fracture toughness of the composites were investigated. The experimental results indicate that the Vickers hardness increased with the increase in TiB2 content. The maximum flexural strength (700 ± 10 MPa) and fracture toughness (7.0 ± 0.2 MPa m1/2) were achieved through addition of 10 vol.% TiB2, however, a slight decrease in the other mechanical properties was observed with TiB2 addition higher than 10 vol.%, which is believed to be due to TiB2 agglomeration.  相似文献   

6.
B4C-TiB2-SiC composites toughened by (TiB2-SiC) agglomerates were prepared via reactive hot pressing with B4C and TiSi2 as raw materials. Phase composition, microstructure, and mechanical properties of the fabricated composites were investigated. The function of (TiB2-SiC) agglomerates was analyzed, and the strengthening and toughening mechanism were also discussed. Results indicated that some of the in situ formed TiB2 and SiC were interlocked to form special (TiB2-SiC) agglomerates in the matrix. The good comprehensive performances of 510 MPa flexural strength, 5.84 MPa·m1/2 fracture toughness, and 31.93 GPa hardness were obtained in the composites fabricated with 30 wt% TiSi2. The in situ introduced fine TiB2 and SiC grains refined the grains of B4C due to the pinning effect, which enhanced the strength. The special (TiB2-SiC) agglomerates and the existing toughening phenomena such as crack deflection, branching, and microcrack regions induced by the mismatch of thermal expansion coefficients, had cumulative effects on improving the fracture toughness.  相似文献   

7.
《Ceramics International》2022,48(9):12006-12013
B4C-based composites were synthesized by spark plasma sintering using B4C、Ti3SiC2、Si as starting materials. The effects of sintering temperature and second phase content on mechanical performance and microstructure of composites were studied. Full dense B4C-based composites were obtained at a low sintering temperature of 1800 °C. The B4C-based composite with 10 wt% (TiB2+SiC) shows excellent mechanical properties: the Vickers hardness, fracture toughness, and flexural strength are 33 GPa, 8 MPa m1/2, 569 MPa, respectively. High hardness and flexural strength were attributed to the high relative density and grain refinement, the high fracture toughness was owing to the crack deflection and uniform distribution of the second phase.  相似文献   

8.
Mullite/TiO2-coated B4C composites with up to 40 wt.% B4C were fabricated by coating B4C powders with Ti-chelate compounds via a sol-gel method prior to the hot-pressing of mullite/B4C mixtures at 1600 °C for 1 h. The effects of TiO2-coated B4C on the densification and the mechanical properties of mullite/B4C composites were investigated. TiO2 reacts with B4C at high temperatures to produce B2O3 and TiB2, both seems to be favorable for the densification of mullite/B4C composites. The formation of TiB2, besides, may lead to the generation of thermal residual stresses, which is deemed to be beneficial to the fracture toughness but detrimental to the flexural strength. The mechanical properties of mullite/B4C composites such as hardness, flexural strength and fracture toughness, are enhanced remarkably with the increasing addition of B4C. However, with a B4C addition more than 20 wt.%, the flexural strength tends to decrease gradually, probably due to the increasing residual stresses originated from the thermal mismatch of TiB2 with mullite and B4C matrix. B4C contents above 30 wt.% easily cause the aggregation of B4C particles in mullite matrix, which will lower the degree of improvement in fracture toughness.  相似文献   

9.
The in situ synthesis/consolidation of B4C–TaB2 eutectic composites by spark plasma sintering (SPS) is reported. Samples for the evaluation of bending strength were cut from specimens with diameters of 30 mm. The sample prepared for the three‐point flexural strength test had fibers of tantalum diboride with diameter of 1.3 ± 0.4 μm distributed in the B4C matrix, thereby reducing composites brittleness and yielding an indentation fracture toughness of up to 4.5 MPa·m1/2. Furthermore, the Vickers hardness of B4C–TaB2 eutectics formed by SPS was as high as 26 GPa at an indentation load of 9.8 N. The flexural strength of the B4C–TaB2 system has been reported for the first time. Some steps were identified in the load–displacement curve, suggesting that micro‐ and macrocracking occurred during the flexural test. Ceramic composites with a eutectic structure exhibited a room‐temperature strength of 430 ± 25 MPa. Compared with other eutectic composites of boron carbide with transition‐metal diborides, room‐temperature strength the B4C–TaB2 was 40% higher than that of B4C–TiB2 ceramics, demonstrating advantage of the in situ synthesis/consolidation of eutectic composites by SPS.  相似文献   

10.
B4C–TiB2–SiC composites toughened by composite structural toughening phases, which are the units of (TiB2–SiC) composite, were fabricated through reactive hot pressing with B4C, TiC, and Si as raw materials. The units of (TiB2–SiC) composite with the size of 10‐20 μm are composed of interlocking TiB2 and SiC with the size of 1‐5 μm. The addition of TiC and Si can effectively promote the sintering of B4C ceramics. The relative densities of all the B4C composites with different contents of TiB2 and SiC are close to completely dense (98.9%‐99.4%), thereby resulting in superior hardness (33.1‐36.2 GPa). With the increase in the content of TiB2 and SiC, the already improved fracture toughness of the B4C composite continuously increases (5.3‐6.5 MPa·m1/2), but the flexure strength initially increases and then decreases. When cracks cross the units of the (TiB2–SiC) composite, the cracks deflect along the interior boundary of TiB2 and SiC inside the units. As the crack growth path is lengthened, the crack propagation direction is changed, thereby consuming more crack extension energy. The cumulative contributions improve the fracture toughness of the B4C composite. Therefore, the composite structural toughening units of the (TiB2–SiC) composite play an important role in reinforcing the fracture toughness of the composites.  相似文献   

11.
Monolithic B4C, B4C–TiB2, and B4C–TiB2–graphene nanoplatelets (GNPs) were fabricated by hot pressing (HP) at 1900 °C for 1 h under an axial pressure of 30 MPa. The microstructures and mechanical and electrical properties of the B4C composites were investigated. The results show that the GNPs are distributed homogeneously in B4C-based ceramic composites. Compared with monolithic B4C, the TiB2–GNPs-containing B4C composite exhibits an approximately 68 % increase in flexural strength and a 169 % increase in fracture toughness due to the synergistic effects of TiB2 particles and GNPs. The toughening mechanisms mainly include TiB2 crack deflection, crack branching, transgranular fracture and GNPs crack deflection, crack bridging, and GNPs pull-out. Additionally, the electrical conductivity of the B4C composite reinforced with dual fillers is three orders of magnitude higher than that of monolithic B4C due to the establishment of a conductive network. The addition of GNPs can efficiently connect the isolated conductive TiB2 particles in the B4C matrix and provides an additional channel for electron migration.  相似文献   

12.
In this work, we systematically studied the effects of powder characteristics (B4C, TiC and Si powders) on the existential form of toughening phases (SiC and TiB2) as well as the overall microstructure and properties of B4C–TiB2–SiC composites fabricated by reactive hot pressing. The particle size of the TiC powder plays a largely determining role in the development of novel toughening phases, the TiB2–SiC composite structure, that are formed in the B4C matrix, while the Si particle size affects the agglomerate level of the SiC phase. The TiB2–SiC composite structure and SiC agglomerates enhance the fracture toughness, but decrease the flexural strength. Both the microstructure and mechanical properties of B4C–TiB2–SiC composites can be effectively tuned by regulating the combinations of the particle sizes of the starting powders. The B4C–TiB2–SiC composites demonstrate flexural strength, fracture toughness and Vickers hardness in the respective range of 567–632 MPa, 5.11–6.38 MPa m1/2, and 34.8–35.6 GPa.  相似文献   

13.
High-performance B4C composites toughened by TiB2-SiC agglomerates were fabricated via reactive hot pressing with B4C, TiC and Si as raw materials. The TiB2-SiC composite serves as a composite toughening phase formed in the B4C matrix through an in situ reaction; its agglomerates are composed of interlocked TiB2 and SiC, which can remarkably improve the toughness of the B4C composites. The Vickers hardness, flexural strength and fracture toughness of the B4C-TiB2-SiC composite reached 35.18 ± 0.45 GPa, 567 ± 14 MPa, and 6.38 ± 0.18 MPa m1/2 respectively. The special toughening structure of the TiB2-SiC composite introduced into B4C ceramics was evaluated for the first time in this study.  相似文献   

14.
B4C-TiB2 ceramics (TiB2 ranging 5~70 vol%) with Mo-Co-WC as the sintering additive were prepared by spark plasma sintering. In comparison with B4C-TiB2 without additive, the enhanced densification was evident in the sintered specimen with Mo-Co-WC additive. Core-rim structured grain was observed around TiB2 grains. The interface of the rim between TiB2 and B4C phases demonstrated different feature: the inner borderline of the rim exhibited a smooth feature, whereas a sharp curved grain boundary was observed between the rim and the B4C grain. The formation mechanism is discussed: the epitaxial growth of (Ti,Mo,W)B2 rim around the TiB2 core may occur as a result of the solid solution and dissolution-precipitation between TiB2 phase and the sintering additive. It was revealed that the fracture toughness increased as the content of TiB2 content increased, alongside the decreased hardness. B4C-30 vol% TiB2 specimen demonstrated the optimal combination of mechanical properties, reaching Vickers hardness of 24.3 GPa and fracture toughness of 3.33 MPa·m1/2.  相似文献   

15.
TaC-NbC with the addition of sintering additive (5 vol.% B4C or 5 vol.% Si) and 3 vol.% Graphene Nanoplatelets (GNP) are consolidated by spark plasma sintering (SPS). GNP are aligned in a uniformly oriented direction perpendicular to the processing axis of the SPS equipment during consolidation. High load instrumented indentation is performed and the projected area of residual damage is compared to estimate relative fracture toughness. The projected residual damaged area after indentation in the surface direction (out-of-plane GNP orientation) was 89% greater in the TaC-NbC-5B4C-3GNP sample, and 96% greater in the TaC-NbC-5Si-3GNP sample when compared to indentation in the orthogonal (in-plane GNP orientation) direction. The toughening mechanisms prevalent in the orthogonal indentation direction (crack bridging and crack deflection) result in greater energy dissipation than the prevalent mechanisms in the surface indentation orientation (sheet sliding, crack bridging, and crack arrest).  相似文献   

16.
Two zirconium diboride-base composites were produced and characterised. The chosen starting compositions were: 55 wt.% ZrB2+41 wt.%TiB2+4 wt.% Ni and 83 wt.% ZrB2+13 wt.% B4C+4 wt.% Ni. The microstructure and properties of these composites were compared to those of a monolithic ZrB2+4 wt.% Ni material. In all cases, metallic Ni as the sintering aid promoted the formation of the liquid phase which improved mass transfer mechanisms during sintering. From the powder mixture ZrB2+TiB2, two solid solutions of Zr–Ti–B were obtained. In the case of the other mixture, B4C particles were dispersed in the ZrB2 matrix. The composite materials have better mechanical properties than those of the monolithic ZrB2 ceramic; in particular the fracture toughness and the flexural strength were almost doubled at room temperature. Long term oxidation tests indicated that the ZrB2-based composites, particularly the composite containing B4C as the second phase, were more resistant to oxidation than the monolithic ZrB2 due to the formation of surface oxide products which were protective against the complete degradation by oxidation observed for the ZrB2 matrix material.  相似文献   

17.
High electrical resistance and low fracture toughness of B4C ceramics are 2 of the primary challenges for further machining of B4C ceramics. This report illustrates that these 2 challenges can be overcome simultaneously using core‐shell B4C‐TiB2&TiC powder composites, which were prepared by molten‐salt method using B4C (10 ± 0.6 μm) and Ti powders as raw materials without co‐ball milling. Finally, the near completely dense (98%) B4C‐TiB2 interlayer ceramic composites were successfully fabricated by subsequent pulsed electric current sintering (PECS). The uniform conductive coating on the surface of B4C particles improved the mass transport by electro‐migration in PECS and thus enhanced the sinterability of the composites at a comparatively low temperature of 1700°C. The mechanical, electrical and thermal properties of the ceramic composites were investigated. The interconnected conductive TiB2 phase at the grain boundary of B4C significantly improved the properties of B4C‐TiB2 ceramic composites: in the case of B4C‐29.8 vol% TiB2 composite, the fracture toughness of 4.38 MPa·m1/2, the electrical conductivity of 4.06 × 105 S/m, and a high thermal conductivity of 33 W/mK were achieved.  相似文献   

18.
Micromechanics modeling was performed to study the effects of thermal residual stress, weak interphases, TiB2 volume fraction and particle size on the mechanical responses and fracture behaviors of B4C-TiB2 composites. Experimentally observed fracture behaviors including micro-cracking and crack deflection were successfully captured. The weak interphases at B4C-TiB2 boundaries and the thermal residual stress induced during cooling by the large CTE mismatch between B4C and TiB2 were identified as two major factors to promote micro-cracking that caused the enhanced progressive failure behavior. Micro-cracking was enhanced with higher TiB2 volume fraction due to higher fraction of weak interphase and material affected by thermal residual stress. Meanwhile, micro-cracking behaviors exhibited limited change with varying TiB2 particle sizes. This modeling study successfully captured the main fracture behaviors and their trends by varying micro-structures of B4C-TiB2 composites and can potentially aid microstructure design of tougher B4C-TiB2 composites in the future.  相似文献   

19.
Boron carbide (B4C)/TiC/Mo ceramic composites with different content of TiC were produced by hot pressing. The effect of TiC content on the microstructure and mechanical properties of the composites has been studied. Results showed that chemical reaction took place for this system during hot pressing sintering, and resulted in a B4C/TiB2/Mo composite with high density and improved mechanical properties compared to monolithic B4C ceramic. Densification rates of the B4C/TiC/Mo composites were found to be affected by additions of TiC. Increasing TiC content led to increase in the densification rates of the composites. The sintering temperature was lowered from 2150 °C for monolithic B4C to 1950 °C for the B4C/TiC/Mo composites. The fracture toughness, flexural strength, and hardness of the composites increased with increasing TiC content up to 10 wt.%. The maximum values of fracture toughness, flexural strength, and hardness are 4.3 MPa m1/2, 695 MPa, and 25.0 GPa, respectively.  相似文献   

20.
In this study, monolithic B4C and B4C-based ceramics incorporating FeNiCoCrMo dual-phase (FCC and BCC) high entropy alloys (HEAs) were produced by spark plasma sintering (SPS). The effect of additives on the densification behavior, mechanical properties, microstructures, and phase evaluation of the samples were investigated. X-ray analysis confirmed the existence of FCC structured HEA and depletion of BCC structured HEA, after high-temperature reaction between B4C-HEAs. The addition of HEAs enhanced the densification behavior by liquid phase sintering. Furthermore, hardness and fracture toughness values of the samples increased with increasing HEAs content. Fracture toughness and hardness values for all composites were higher than the monolithic B4C. A combination of the highest density (∼99.22 %) and the best mechanical properties (32.3 GPa hardness and 4.53 MPa m1/2 fracture toughness) was achieved with 2.00 vol.% HEA addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号