首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2015,41(7):8936-8944
Monolithic B4C ceramics and B4C–CNT composites were prepared by spark plasma sintering (SPS). The influence of particle size, heating rate, and CNT addition on sintering behavior, microstructure and mechanical properties were studied. Two different B4C powders were used to examine the effect of particle size. The effect of heating rate on monolithic B4C was investigated by applying three different heating rates (75, 150 and 225 °C/min). Moreover, in order to evaluate the effect of CNT addition, B4C–CNT (0.5–3 mass%) composites were also produced. Fully dense monolithic B4C ceramics were obtained by using heating rate of 75 °C/min. Vickers hardness value increased with increasing CNT content, and B4C–CNT composite with 3 mass% CNTs had the highest hardness value of 32.8 GPa. Addition of CNTs and increase in heating rate had a positive effect on the fracture toughness and the highest fracture toughness value, 5.9 MPa m1/2, was achieved in composite with 3 mass% CNTs.  相似文献   

2.
High-performance B4C composites toughened by TiB2-SiC agglomerates were fabricated via reactive hot pressing with B4C, TiC and Si as raw materials. The TiB2-SiC composite serves as a composite toughening phase formed in the B4C matrix through an in situ reaction; its agglomerates are composed of interlocked TiB2 and SiC, which can remarkably improve the toughness of the B4C composites. The Vickers hardness, flexural strength and fracture toughness of the B4C-TiB2-SiC composite reached 35.18 ± 0.45 GPa, 567 ± 14 MPa, and 6.38 ± 0.18 MPa m1/2 respectively. The special toughening structure of the TiB2-SiC composite introduced into B4C ceramics was evaluated for the first time in this study.  相似文献   

3.
Tantalum diboride – boron suboxide ceramic composites were densified by spark plasma sintering at 1900 °C. Strength and fracture toughness of these bulk composites at room temperature were 490 MPa and 4 MPa m1/2, respectively. Flexural strength of B6O–TaB2 ceramics increased up to 800 °C and remained unchanged up to 1600 °C. At 1800 °C a rapid decrease in strength down to 300 MPa was observed and was accompanied by change in fracture mechanisms suggestive of decomposition of boron suboxide grains. Fracture toughness of B6O–TaB2 composites showed a minimum at 800 °C, suggestive a relaxation of thermal stresses generated from the mismatch in coefficients of thermal expansion.Flexural strength at elevated temperatures for bulk TaB2 reference sample was also investigated.Results suggest that formation of composite provides additional strengthening/toughening as in all cases flexural strength and fracture toughness of the B6O–TaB2 ceramic composite was higher than that reported for B6O monoliths.  相似文献   

4.
Titanium carbide ceramics with different contents of boron or B4C were pressureless sintered at temperatures from 2100 °C to 2300 °C. Due to the removal of oxide impurities, the onset temperature for TiC grain growth was lowered to 2100 °C and near fully dense (>98%) TiC ceramics were obtained at 2200 °C. TiB2 platelets and graphite flakes were formed during sintering process. They retard TiC grains from fast growth and reduced the entrapped pores in TiC grains. Therefore, TiC doped with boron or B4C could achieve higher relative density (>99.5%) than pure TiC (96.67%) at 2300 °C. Mechanical properties including Vickers’ hardness, fracture toughness and flexural strength were investigated. Highest fracture toughness (4.79 ± 0.50 MPa m1/2) and flexural strength (552.6 ± 23.1 MPa) have been obtained when TiC mixed with B4C by the mass ratio of 100:5.11. The main toughening mechanisms include crack deflection and pull-out of TiB2 platelets.  相似文献   

5.
《Ceramics International》2016,42(12):14066-14070
Ultrahigh temperature ZrB2-SiCw-Graphene ceramic composites are fabricated by hot pressing ZrB2-SiCw-Graphene oxide powders at 1950 °C and 30 MPa for 1 h. The microstructures of the composites are characterized by Scanning electron microscopy, Raman spectroscopy and X-ray diffraction. The results show that multilayer graphene nanosheets are achieved by thermal reduction of graphene oxide during sintering process. Compared with monolithic ZrB2 materials, flexural strength and fracture toughness are both improved due to the synergistic effect of SiC whisker and graphene nanosheets. The toughening mechanisms mainly are the combination of SiC whisker and graphene nanosheets crack bridging, pulling out.  相似文献   

6.
SiC-reinforced MoSi2 composites have been successfully prepared by in situ pressureless sintering from elemental powders of Mo, Si and C. Meanwhile, the evolutions of the samples’ microstructure and phase at different temperatures were investigated by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) with an energy dispersive X-ray spectrometer (EDS). It can be seen that at the temperature of 1100 °C, the main phases were Mo and Si, accompanying with a small amount of rich molybdenum products Mo5Si3 and Mo3Si. Then the main phases changed to MoSi2 and SiC when the sintering temperature reached 1300 °C. Finally we obtained MoSi2/SiC composites with well-dispersed SiC particles after sintering at the temperature of 1550 °C for 120 min. The evolution of porosity in these composites fits the porosity reduction model well developed by Pines and Bruck, which revealed the particle agglomeration in the composites. The flexural strength and fracture toughness of 10% SiC/MoSi2 composites were up to 274.5 MPa and 5.5 MPa m1/2, increased by approximately 40.8% and 30.6% compared with those of monolithic MoSi2, respectively.  相似文献   

7.
B4C-SiC composites with fine grains were fabricated with hot-pressing pyrolyzed mixtures of polycarbosilane-coated B4C powder without or with the addition of Si at 1950 °C for 1 h under the pressure of 30 MPa. SiC derived from PCS promoted the densification of B4C effectively and enhanced the fracture toughness of the composites. The sinterability and mechanical properties of the composites could be further improved by the addition of Si due to the formation of liquid Si and the elimination of free carbon during sintering. The relative density, Vickers hardness and fracture toughness of the composites prepared with PCS and 8 wt% Si reached 99.1%, 33.5 GPa, and 5.57 MPa m1/2, respectively. A number of layered structures and dislocations were observed in the B4C-SiC composites. The complicated microstructure and crack bridging by homogeneously dispersed SiC grains as well as crack deflection by SiC nanoparticles may be responsible for the improvement in toughness.  相似文献   

8.
《Ceramics International》2017,43(5):4062-4067
The resorcinol-formaldehyde (RF) gel-casting system is employed for the first time to fabricate a hierarchical porous B4C/C preform, which was subsequently used for the fabrication of reaction bonded boron carbide (RBBC) composites via a liquid silicon infiltration process. The effect of the carbon content and carbon structures of this perform on the microstructures and mechanical properties of B4C/C preform and the resultant RBBC composites is reported. The B4C/C preform (16 wt% carbon) exhibit a strength of 34±1 MPa. The obtained RBBC composites shown uniform microstructure is consisted of SiC particles bonded boron carbide scaffold and an interpenetrating residual silicon phase. The Vickers hardness, flexural strength and fracture toughness of the RBBC composites (16 wt% carbon) are 24 GPa, 452 MPa and 4.32 MPa m1/2, respectively.  相似文献   

9.
B4C–SiC intergranular/intragranular nanocomposites with high hardness and high toughness were fabricated through mechanochemical processing with B4C, Si, and graphite powders and subsequent hot pressing without any sintering aid. The milled powders are composed of stacking-disordered SiC and nanocrystalline B4C. Most nano/micron-sized SiC particles are homogeneously dispersed in B4C matrix, and some nano-sized SiC and B4C particles are embedded into B4C grains to form an intergranular/intragranular structure. The disordered characteristic of the milled powders is the essential factor for the formation of the intragranular structure, sudden densification within the narrow temperature range (1700–1900 °C), and the preparation of dense samples under a relatively low temperature (1900 °C). The relative density, Vickers hardness, and fracture toughness of the samples sintered at 1950 °C are 98.6%, 34.3 GPa, and 6.0 MPa m1/2, respectively. The intergranular/intragranular structure plays an important role in improving fracture toughness and hardness of the composites.  相似文献   

10.
《Ceramics International》2017,43(13):10224-10230
Whiskers and nanoparticles are usually used as reinforcing additives of ceramic composite materials due to the synergistically toughening and strengthening mechanisms. In this paper, the effects of TiC nanoparticle content, particle size and preparation process on the mechanical properties of hot pressed Al2O3-SiCw ceramic tool materials were investigated. The results showed that the Vickers hardness and fracture toughness of the materials increased with the increasing of TiC content. The optimized flexural strength was obtained with TiC content of 4 vol% and particle size of 40 nm. The particle size has been found to have a great influence on flexural strength and small influence on hardness and fracture toughness. It was concluded that the flexural strength increased remarkably with the decreasing of the TiC particle size, which was resulted from the improved density and refined grain size of the composite material due to the dispersion of the smaller TiC particle size. SEM micrographs of fracture surface showed the whiskers to be mainly distributed along the direction perpendicular to the hot-pressing direction. The fracture toughness was improved by whisker crack bridging, crack deflection and whisker pullout; the TiC nanoparticles in Al2O3 grains caused transgranular fracture and crack deflection, which improved the flexural strength and fracture toughness with whiskers synergistically. Uniaxial hot-pressing of SiC whisker reinforced Al2O3 ceramic composites resulted in the anisotropy of whiskers’ distribution, which led to crack propagation differences between lateral crack and radical crack.  相似文献   

11.
This study examines the reactions occurring from room temperature to 2180 °C during the heating under argon of mixtures of B4C and metal oxides, as well as the properties of the ceramic composites prepared by these reactions. The cations of the oxides investigated, belonged to the transition metal and to the lanthanide groups. The mixtures underwent solid-state reactions in the range between 1100 and 1900 °C. These reactions resulted in composites in which the metal borides and B4C are the majority phases. The boron carbide/metal boride(s) mixtures resulted from these reactions exhibited a sintering aptitude significantly higher than that of pure boron carbide. The improvement in the sintering aptitude was proportional to the oxide content present in the initial mixture, up to an upper limit. B4C/boride(s)-type composites, exhibiting bulk densities ≥97% TD, could be prepared for certain compositions by pressureless heating at 2180 °C. The ceramic parts prepared under these conditions are characterized by strength and hardness values similar to those determined for pure boron carbide.  相似文献   

12.
By adding a small amount of tungsten carbide (WC) as sintering aids, nearly fully dense TiC ceramics were obtained by spark plasma sintering at 1450–1600 °C. The results show that the densification temperature of TiC ceramic was significantly decreased with the addition of 3.5 wt% WC. Compared with the monolithic TiC, the densification temperature of TiC–3.5 wt% WC is lower by ~150 °C and no deterioration of mechanical properties is observed. The TiC composite sintered at 1600 °C exhibits full density, a Vickers hardness of 28.2 ± 1.2 MPa, a flexural strength of 599.5 ± 34.7 MPa and a fracture toughness of 6.3 ± 1.4 MPa m1/2.  相似文献   

13.
《Ceramics International》2017,43(11):8190-8194
Bulk boron carbide (B4C) ceramics was fabricated from a boron and carbon mixture by use of one-step reactive spark plasma sintering (RSPS). It was also demonstrated that preliminary high-energy ball milling (HEBM) of the B+C powder mixture leads to the formation of B/C composite particles with enhanced reactivity. Using these reactive composites in RSPS permits tuning of synthesized B4C ceramic microstructure. Optimization of HEBM + RSPS conditions allows rapid (less than 30 min of SPS) fabrication of B4C ceramics with porosity less than 2%, hardness of ~35 GPa and fracture toughness of ~ 4.5 MPa m 1/2  相似文献   

14.
TiC and Mo were introduced into B4C-based ceramic nozzles, which were obtained by hot-press sintering. The effect of TiC content on mechanical properties and erosion behavior of B4C-based ceramic nozzles were analyzed. XRD analysis showed that chemical reactions took place during the sintering process, which resulted in B4C/Mo/TiB2 ceramic nozzle with high density and improved mechanical properties compared with B4C/Mo ceramic nozzle. The sintering temperature was decreased from 2150 °C for B4C/Mo ceramic nozzle to 1950 °C for B4C/Mo/TiB2 ceramic nozzle. Results of erosion wear tests indicated that the hardness and toughness were the key factors influencing the erosion rate of B4C/Mo/TiB2 ceramic nozzle. Analysis of the eroded bore surfaces of B4C/Mo/TiB2 ceramic nozzle showed that the entry bore section exhibited a brittle fracture induced material removal process, and the center bore section showed plowing and polishing of material removal. Fracture and plowing of material removal occurred at the exit bore section.  相似文献   

15.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   

16.
ZrB2-based ceramics with SiCw were produced by hot pressing at 1750 °C for 1 h from mixed powders after adding liquid polycarbosilane. The obtained ZrB2-SiCw composites had toughness up to 7.57 MPa m1/2, which was much higher than those for monolithic ZrB2, SiC particles reinforced ZrB2 composites, and other ZrB2–SiCw composites directly sintered at high temperatures. The added liquid polycarbosilane could reduce the sintering temperatures and restrict the reaction of matrix with whisker, which led to fewer damages to the whisker and high fracture toughness.  相似文献   

17.
《Ceramics International》2017,43(4):3831-3838
We prepared Al/TiC composites with different ceramic volume fractions (15, 25 and 35 vol%) using ice-templating and pressure infiltration. The thickness of the lamellar layer and the porosity in the ceramic layer of the TiC scaffolds were controlled by varying the slurry concentration. The Al/15 vol%TiC composite had a thick metal layer and a low-density ceramic layer, which effectively dissipated the stress at the crack tip and fractured in a multiple-crack-propagation mode, giving bending strength of 355±3 MPa and fracture toughness of 81±2 MPa m1/2. However, the Al/25 vol%TiC and Al/35 vol%TiC composites had much higher bending strength (417−500 MPa) but lower fracture toughness (46−33 MPa m1/2) as compared to the Al/15 vol%TiC composite, and they fractured in a single-crack-propagation mode. In addition, an increase in the brittle TiAl3 phase with increasing ceramic volume at the fracture surface greatly deteriorated the toughness of the Al/TiC composites. Finally, the relationship between cracking mode and structure features in the laminated composites was discussed to account for the toughening mechanism.  相似文献   

18.
B4C/graphite composites (BGC) containing substitutional boron were fabricated by pressureless sintering of powder mixtures of petroleum coke, coal tar pitch and B4C. After sintering at 900 °C and graphitizing at 2200 °C, the microstructure of BGC was characterized by SEM, TEM, XRD, Raman spectroscopy and optical microscopy. XPS measurements revealed the formation of BC3, and the matrix carbon contained around 6 wt.% substitutional boron. The thermal conductivity of the BGC at room temperature is 52.7 W/m K and the flexural strength is up to 35.1 MPa. The bulk density and electrical resistivity are 1.72 g/cm3 and 13.4 μΩ m, respectively. The correlation between microstructure and properties was investigated. The results showed that the microstructure improvement of the BGC has obvious effect on the thermal conductivity, flexural strength, and electrical resistivity.  相似文献   

19.
Al2O3/TiC ceramic composites with the additions of CaF2 solid lubricants were produced by hot pressing. The effect of the solid lubricant on the microstructure and mechanical properties of the ceramic composite has been studied. The friction coefficient and wear rates were measured using the ring-block method, and the tribological behaviors were discussed in relation to its mechanical properties and microstructure. Results showed that additions of CaF2 solid lubricants to Al2O3/TiC matrix led to a decrease in the flexural strength, fracture toughness, and hardness compared to a conventional Al2O3/TiC composite. The friction coefficient of Al2O3/TiC/CaF2 ceramic composites when sliding against both cemented carbide and hardened steel decreased with an increase in CaF2 content up to 15 vol.%. The reason is that the CaF2 released and smeared on the wear surface, and acted as solid lubricant film between the sliding couple. When the content of CaF2 solid lubricant is less than 10 vol.%, the wear rate of Al2O3/TiC/CaF2 composites decreases with an increase in CaF2 content, with further increases in CaF2 content, the wear rate of Al2O3/TiC/CaF2 composites increases rapidly. This is due to the large degradation of mechanical properties in samples with high CaF2 contents.  相似文献   

20.
(Zr, Hf)B2–SiC nanostructured composites were fabricated by high energy ball milling and reactive spark plasma sintering (RSPS) of HfB2, ZrSi2, B4C and C. Highly dense composites with homogeneously intermixed ultra-fine (Zr, Hf)B2 and SiC grains (100–300 nm) were obtained after RSPS at 1600 °C for 10 min. The densification was promoted by high energy ball milling and ZrSi2 additive. The additives were almost completely transformed into ZrB2 and SiC during densification. The improvement of flexural strength and fracture toughness (641 MPa and 5.36 MPa m1/2, respectively) was achieved. The relationships between the ultra-fine microstructure and mechanical properties were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号