首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The phase composition, microstructure, microwave dielectric properties of (Al0.5Nb0.5)4+ co-substitution for Ti site in LiNb0.6Ti0.5O3 ceramics and the low temperature sintering behaviors of Li2O-B2O3-SiO2 (LBS) glass were systematically discussed. XRD patterns and EDS analysis result confirmed that single phase of Li1.075Nb0.625Ti0.45O3 solid solution was formed in all component. The increase of dielectric constant (εr) is ascribed to the improvement of bulk density. The restricted growth of grain has a negative influence on quality factor (Q×f) value. The τf value could be continuously shifted to near zero as the doping content increases. Great microwave dielectric properties were obtained in LiNb0.6Ti(0.5-x)(Al0.5Nb0.5)xO3 ceramics (x?=?0.10) when sintered at 1100?℃ for 2?h: εr =?70.34, Q×f =?5144?GHz, τf =?4.8?ppm/℃. The sintering aid, LBS glass, can effectively reduce the temperature and remain satisfied microwave performance. Excellent microwave dielectric properties for x?=?0.10 were obtained with 1.0?wt% glass: εr =?70.16, Q×f =?4153?GHz (at 4?GHz), τf =?-0.65?ppm/℃ when sintered at 925?℃ for 2?h.  相似文献   

2.
Mg(1-x)ZnxTa2O6 (x = 0.00?0.08) dielectric ceramics were synthesized via the traditional solid-state reaction method. We used XRD and Rietveld refinement to demonstrate that a pure Mg(1-x)ZnxTa2O6 phase with trirutile structure was formed. Zn2+ substitution helped to decrease the Raman full width at half width of the A1g mode at 703 cm?1, which resulted in an increase in the order and rigidity of the TaO6 octahedron, this in turn contributed to improving the Q×f values. Additionally, the introduction of Zn2+ significantly promoted grain growth and increased the dense, and the molecular polarizability, these factors lead to a higher permittivity. Moreover, enhanced Ta-O bond energy resulted in a more stable TaO6 octahedron in the Mg(1?x)ZnxTa2O6 system, which contributed to enhanced τf values via substitution of Zn2+ doped on the A-site. Correspondingly, the microwave dielectric properties were significantly improved for 0.04-doped samples, obtaining: εr = 27, Q × f = 185,000 GHz (at 7.47 GHz), τf =32 ppm/°C.  相似文献   

3.
Li2Mg3Zr1?xTixO6 (x = 0, 0.2, 0.4, 0.6, 0.8, 1) ceramics were prepared via a solid-state reaction method. Crystal structures, sintering behaviors, micro-structures and microwave dielectric properties of Li2Mg3Zr1?xTixO6 (0 ≤ x ≤ 1) ceramics were investigated by XRD, SEM and chemical bond theory. XRD results showed that a single phase with the rock-salt structure was formed in all ranges. On the basis of the Rietveld refinement and chemical bond theory, several intrinsic parameters were calculated and connections between intrinsic parameters and microwave dielectric properties were investigated. The substitutions of Ti4+ for Zr4+ obviously increased the relative density and improved the quality factors. Variations of εr could be explained by changes of the polarizability. Q·f values showed the similar trend with the packing fractions, average bond valences and lattice energy of Zr–O bonds. τ? values significantly correlated with the bond energy of Zr–O bonds.  相似文献   

4.
《Ceramics International》2022,48(16):23044-23050
Nd[(Mg1-xZnx)1/2Ti1/2]O3 perovskite ceramics (x = 0, 0.2, 0.4, 0.6, 0.8) are prepared by the solid-state reaction method. The effects of Zn2+ substitution on the structure, microstructure, especially the B-site 1:1 cation ordering and microwave dielectric properties have been investigated. Sintered Nd[(Mg1-xZnx)1/2Ti1/2]O3 ceramics all adopt dense microstructure, along with increased dimensional uniformity as Zn2+ substitution. All the ceramics are confirmed to have B-site 1:1 ordered monoclinic perovskite structure with P21/n space group. Atomic mass difference of B-site elements might be an important factor affecting the B-site 1:1 cation ordering. HRSTEM observation suggest that the doped Zn2+ cations have roughly entered the Mg2+ sites to promote 1:1 cation ordering. The degree of the 1:1 cation ordering can be negatively reflected by the full width at half maximum (FWHM) of F2g(B) mode at 372 cm?1 in Raman spectra. With Zn2+ doping, the degree of the 1:1 cation ordering first increases then decreases, and reaches its maximum at x = 0.6. Meanwhile the best combination of microwave dielectric properties is obtained, as εr = 31.4, Q × f = 74,000 GHz, τf = ?44 ppm/°C. It is found that the long-range ordering not only decreases the dielectric loss but also affects the dielectric constant, providing a theoretical foundation to understand further the correlation between ionic configuration and microwave dielectric properties.  相似文献   

5.
La2(Zr1−xTix)3(MoO4)9 (0 ≤ x ≤ 0.1) ceramics were prepared by the traditional solid-state reaction method. XRD analysis showed that La2(Zr1−xTix)3(MoO4)9 (0 ≤ x ≤ 0.1) ceramics belonged to a trigonal system. Based on the chemical bond theory, the consequences of bond energy, bond ionicity, lattice energy, and thermal expansion coefficient of ceramics on microwave dielectric properties were discussed. As Ti4+ addition was increased, the reduction in dielectric constant was ascribed to the fact that the polarizability of Ti4+ is smaller than Zr4+, and the downward trend was related to the bond ionicity. Besides, the tendency of Q·f value depended on the packing fraction and the lattice energy. The improvement in τf value, the increase in bond energy, and the decrease in the coefficient of thermal expansion were all correlated. The far-infrared spectra implied that the absorptions of structural phonon oscillation were the main reason for the maximum polarization contribution. La2(Zr0.92Ti0.08)3(MoO4)9 ceramics sintered at 750°C for 4 hours exhibited the best dielectric properties (εr = 10.33, Q·f = 80 658 GHz, and τf = 3.48 ppm/°C).  相似文献   

6.
《Ceramics International》2016,42(13):14749-14753
Sm2(Zr1–xTix)2O7 (0≤x≤0.15) ceramics have been fabricated by pressureless-sintering method at 1973 K for 10 h in air. The influence of TiO2 doping on microstructure and thermo-optical properties of Sm2(Zr1–xTix)2O7 ceramics is investigated by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The partial substitution of Ti4+ for Zr4+ results in a significant increase in emissivity at low wavelengths contrasted with undoped Sm2Zr2O7. Sm2(Zr0.85Ti0.15)2O7 ceramic exhibits a high emissivity of above 0.70 at 1073 K in a wavelength range of 3–16 µm, where the highest value at this temperature is more than 0.90 especially in the wavelength range of 9–14 µm. FT-IR spectra and optical absorption spectra unveil the mechanisms of enhanced emissivity in Sm2(Zr1–xTix)2O7 (0.05≤x≤0.15) ceramics in the intermediate infrared range, especially at the wavelengths of 3–8 µm, due to Ti4+ ion substitution for Zr4+ ion.  相似文献   

7.
Novel low-temperature fired Li3Mg2Nb1-xVxO6 (x?=?0.02??0.08) microwave dielectric ceramics were synthetized by the partial substitution of V5+ ions on the Nb5+ sites. The effects of V5+ substitution on structure and microwave dielectric properties were investigated in detail. XRD patterns and Rietveld refinement demonstrated that all of the samples exhibited a single orthorhombic structure. The structural characteristics such as the polarizability, packing fraction and NbO6 octahedron distortion were determined to establish the correlations between the structure and the microwave dielectric characteristics. The ?r values presented a tendency similar to that of the polarizability. The high Q×f values were mainly attributed to the effects of the grain sizes and density rather than the packing fraction. The variation in the τf values was attributed to NbO6 octahedron distortion. Notably, the Li3Mg2Nb1-xVxO6 (x?=?0.02) ceramics sintered at 900?°C had outstanding microwave dielectric properties: εr=?16, Q×f=?131,000?GHz (9.63?GHz), and τf=???26?ppm/°C, making these ceramics promising ultralow loss candidates for low temperature co-fired ceramics (LTCC) applications.  相似文献   

8.
The effects of substitution of (Zn1/3Nb2/3) for Ti on the sintering behavior and microwave dielectric properties of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (0 ≤ x ≤ 4) ceramics have been investigated. The dielectric constant (?r) and the temperature coefficient of the resonant frequency (τf) of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 ceramics decreased with increasing x. However, the Q × f values enhanced with the substitution of (Zn1/3Nb2/3) for Ti. It was found that a small amount of MnCO3-CuO (MC) and ZnO-B2O3-SiO2 (ZBS) glass additives to Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics lowered the sintering temperature from 1250 to 900 °C. And Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics with 1 wt% MC and 1 wt% ZBS sintered at 900 °C for 2 h showed excellent dielectric properties: ?r = 53, Q × f = 14,600 GHz, τf = 6 ppm/°C. Moreover, it has a chemical compatibility with silver, which made it as a promising material for low temperature co-fired ceramics technology application.  相似文献   

9.
Ti4+-modified MgZrNb2O8 (MgZr1-xTixNb2O8, x = 0, 0.1, 0.2, 0.3, 0.4) ceramics were synthesized using the traditional solid-state reaction method. Pure MgZr1–xTixNb2O8 was detected without any secondary phase via the X-ray diffraction patterns. According to the sintering behavior and the surface morphology results, the introduction of Ti4+ reduced the sintering temperature and promoted the grain growth. The correlations between the dielectric properties and the crystal structure were analyzed through the Rietveld refinement and Raman spectroscopy. The slight shifts of the Raman peaks, corresponding to different vibration modes, were induced by the substitution of Ti4+ for Zr4+ and related to the improved quality factor. In general, the sample of MgZr0.9Ti0.1Nb2O8 sintered at 1320°C for 4 h exhibited promising microwave dielectric properties with an ultra-high Q × f value of 130 123 GHz (at 7.308 GHz, 20°C), which is potential for 5G communication applications.  相似文献   

10.
《Ceramics International》2018,44(18):22710-22717
In this study, the influence of substitution of Zr for Ti on crystal structure and microwave dielectric properties of Zn0.15Nb0.3(Ti1-xZrx)0.55O2 (0 ≤ x ≤ 0.7) ceramics were discussed through Rietveld refinement, normalized bond analysis and complex chemical bond theory. Rietveld refinement analysis indicated that a composite could be formed for x ≤ 0.22. Pure orthorhombic type (O-type) solid solutions are prepared in the region of x = 0.3–0.7. With the increasing amount of ZrO2, cell volume of O-type phase increases, and it results in the enlarging and compressing behaviors of chemical bonds. Under the circumstances, the dielectric polarizability is deteriorated because of the reducing chemical bond covalency value (fc), and this finding is also confirmed by Clausius-Mosotti equation. Lattice energy of Zr–O1 bonds and grain size distribution of sintered specimens are mainly responsible for the variations of quality factor (Q × f) value. Chemical bond energy (E) is closely related with the temperature coefficient of resonant frequency value (τf). Typical microwave dielectric properties of Zn0.15Nb0.3(Ti1-xZrx)0.55O2 ceramics (x = 0.22) were obtained when sintered at 1100 °C: εr = 46.31, Q × f = 30,297 GHz, τf = -8.24 ppm/°C.  相似文献   

11.
《Ceramics International》2023,49(10):15304-15314
In this paper, a series of Li2Zn[Ti1-x(Co1/3Nb2/3)x]3O8 (0.0 ≤ x ≤ 0.4) ceramics were prepared via the conventional solid-state method. The influences of (Co1/3Nb2/3)4+ complex ions on the phase composition, spectral characteristics, microstructure, and microwave dielectric properties of Li2Zn[Ti1-x(Co1/3Nb2/3)x]3O8 ceramics were studied systematically. XRD analysis accompanied with Rietveld refinements showed that pure Li2ZnTi3O8 solid solution ceramics with the cubic spinel structure were obtained at x = 0.2–0.4. New Raman-active mode of about 858 cm−1 should be attributed to the vibrations of NbO6 due to the high bond energy of Nb–O bonds, exerting a certain impact on the structure and performance of Li2Zn[Ti1-x(Co1/3Nb2/3)x]3O8 ceramics. XPS results indicated that Nb5+ ion donor suppressed the deoxidation process and therefore resulted in the disappearance of Ti3+ ion and oxygen vacancy. The downward trend variation in the εr value with the increase of (Co1/3Nb2/3)4+ content could be explained by the presence of “compressed” cations and “rattling” cations effect. In addition, the Q × f of the current ceramics was closely dependent on relative density, grain size, FWHM, and oxygen vacancy. Good combined microwave dielectric properties of εr = 24.5, Q × f = 91,250 GHz, and τf = −16.8 ppm/°C were achieved for the Li2Zn[Ti0.8(Co1/3Nb2/3)0.2]3O8 ceramic sintered at 1120 °C. High quality factor gives evidence that the Li2Zn[Ti0.8(Co1/3Nb2/3)0.2]3O8 ceramic is an appealing candidate for highly selective microwave devices.  相似文献   

12.
《Ceramics International》2020,46(4):4543-4549
In this work, xZn0.5Ti0.5NbO4-(1-x) ZrTiO4 (0.1 ≤ x ≤ 0.5) ceramics were prepared through the traditional solid-state route. The microstructure, phase evolution and crystallographic variations were investigated in detail. An orthorhombic structure solid solution was formed with the composition of Zr1-xZn0.5xTi1-0.5xNbxO4 (0.1 ≤ x ≤ 0.5). Variations of lattice parameters were responsible for the opposite movement of different XRD peaks as increasing x value. Chemical bond theories include that bond ionicity, bond susceptibility, lattice energy, bond energy and linear thermal expansion coefficient are correlated with dielectric properties. Temperature stable ceramics were obtained when x = 0.2 with excellent dielectric performances: Q × f = 26741 GHz, εr = 41.93 and τf = −2.3 ppm/oC.  相似文献   

13.
Cordierite-based dielectric ceramics with a lower dielectric constant would have significant application potential as dielectric resonator and filter materials for future ultra-low-latency 5G/6G millimeter-wave and terahertz communication. In this article, the phase structure, microstructure and microwave dielectric properties of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 (0 ≤ x ≤ 0.3) ceramics are studied by crystal structure refinement, scanning electron microscope (SEM), the theory of complex chemical bonds and infrared reflectance spectrum. Meanwhile, complex double-ions coordinated substitution and two-phase complex methods were used to improve its Q×f value and adjust its temperature coefficient. The Q×f values of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 single-phase ceramics are increased from 45,000 GHz@14.7 GHz (x = 0) to 150,500 GHz@14.5 GHz (x = 0.15) by replacing Al3+ with Zn2+-Mn4+. The positive frequency temperature coefficient additive TiO2 is used to prepare the temperature stable Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 composite ceramic. The composite ceramic of Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 (8.7 wt% ≤ y ≤ 10.6 wt%) presents the near-zero frequency temperature coefficient at 1225 °C sintering temperature: εr = 5.68, Q×f = 58,040 GHz, τf = ?3.1 ppm/°C (y = 8.7 wt%) and εr = 5.82, Q×f = 47,020 GHz, τf = +2.4 ppm/°C (y = 10.6 wt%). These findings demonstrate promising application prospects for 5 G and future microwave and millimeter-wave wireless communication technologies.  相似文献   

14.
《Ceramics International》2020,46(13):21336-21342
Li3Mg2(Nb1-xWx)O6+x/2 (0 ≤ x ≤ 0.08) ceramics were synthesized by the solid-state reaction route. The effects of W6+ substitution on the phase composition, microstructure and microwave dielectric properties of Li3Mg2NbO6 ceramics were investigated systematically. The XRD results showed that all the samples formed a pure solid solution in the whole doping range. The SEM iamges and relative density revealed the dense structure of Li3Mg2(Nb1-xWx)O6+x/2 ceramics. The relationship between the crystal structure and dielectric properties of Li3Mg2(Nb1-xWx)O6+x/2 ceramics was researched through polarizability, average bond valence, and bond energy. The substitution of W6+ for Nb5+ in Li3Mg2(Nb1-xWx)O6+x/2 ceramics significantly promoted the Q × f values. In addition, the increase of W6+ content improved the thermal stability of the Li3Mg2(Nb1-xWx)O6+x/2 ceramics. The Li3Mg2(Nb0.94W0.06)O6.03 ceramics sintered at 1175 °C for 6h possessed excellent properties: εr ~ 15.82, Q × f ~ 124,187 GHz, τf ~ −18.28 ppm/°C.  相似文献   

15.
Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were prepared by the conventional solid-state reaction method. The phase composition, sintering characteristics, microstructure and dielectric properties of Ti4+ replacement by Nb5+ in the formed solid solution Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics were systematically studied. The structural variations and influence of Nb5+ doping in Mg(Ti1-xNbx)O3 were also systematically investigated by X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction and its Rietveld refinement results confirmed that Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics crystallised into an ilmenite-type with R-3 (148) space group. The replacement of the low valence Ti4+ by the high valence Nb5+ can improve the dielectric properties of Mg(Ti1-xNbx)O3 (x = 0–0.09). This paper also studied the different sintering temperatures for Mg(Ti1-xNbx)O3 (x = 0–0.09) ceramics. The obtained results proved that 1350 °C is the best sintering temperature. The permittivity and Q × f initially increased and then decreased mainly due to the effects of porosity caused by the sintering temperature and the doping amount of Nb2O5, respectively. Furthermore, the increased Q × f is correlated to the increase in Ti–O bond strength as confirmed by Raman spectroscopy, and the electrons generated by the oxygen vacancies will be compensated by Nb5+ to a certain extent to suppress Ti4+ to Ti3+, which was confirmed by XPS. The increase in τf from ?47 ppm/°C to ?40.1 ppm/°C is due to the increment in cell polarisability. Another reason for the increased τf is the reduction in the distortion degree of the [TiO6] octahedral, which was also confirmed by Raman spectroscopy. Mg(Ti0.95Nb0.05)O3 ceramics sintered at 1350 °C for 2 h possessed excellent microwave dielectric properties of εr = 18.12, Q × f = 163618 GHz and τf = ?40.1 ppm/°C.  相似文献   

16.
《Ceramics International》2017,43(7):5427-5433
(Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4 powder was synthesized by a solid state reaction. Then, Ni0.4Zn0.6Fe2O4 was grown on the (Mg0.95Zn0.05)(Ti0.8Sn0.2)O4 particles in a hydrothermal environment to form a core-shell structure. (1-x)(Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4@xNi0.4Zn0.6Fe2O4 composite ceramics were sintered at 1200 °C with these powders. XRD, SEM, TEM analyses indicated that high dense core-shell ceramics without any foreign phase were obtained. Different types of sharp interfaces were self-assembled owing to the minimization of direct elastic energy in the hydrothermal environment. The composites enjoy good magnetic and dielectric properties, especially, good microwave dielectric properties with high saturation magnetization when the ferrite content is 0.3–0.5. The results provided a powerful experimental basis for the sensor and transducer.  相似文献   

17.
In this work, ultra-low loss Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics were successfully prepared via the conventional solid-state method. X-ray photoelectron spectroscopy (XPS), thermally stimulated depolarization current (TSDC) and bond energy were used to determine the distinction between intrinsic and extrinsic dielectric loss in (Mg1/3Nb2/3)4+ ions substituted ceramics. The addition of (Mg1/3Nb2/3)4+ ions enhances the bond energy in unit cell without changing the crystal structure of Li2MgTiO4, which results in high Q·f value as an intrinsic factor. The extrinsic factors such as porosity and grain size influence the dielectric loss at lower sintering temperature, while the oxygen vacancies play dominant role when the ceramics densified at 1400?°C. The Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr =?16.19, Q·f?=?160,000?GHz and τf =??3.14?ppm/°C. In addition, a certain amount of LiF can effectively lower the sintering temperature of the matrix, and the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4-3?wt% LiF ceramics sintered at 1100?°C possess balanced properties with εr?=?16.32, Q·f?=?145,384?GHz and τf =??16.33?ppm/°C.  相似文献   

18.
Bismuth sodium zirconate titanate ceramics with the formula Bi0.5Na0.5Zr1-xTixO3 [BNZT], where x = 0.3, 0.4, 0.5, and 0.6, were prepared by a conventional solid-state sintering method. Phase identification was investigated using an X-ray diffraction technique. All compositions exhibited complete solubility of Ti4+ at the Zr4+ site. Both a decrease of unit cell size and phase transition from an orthorhombic Zr-rich composition to a rhombohedral crystal structure in a Ti-rich composition were observed as a result of Ti4+ substitution. These changes caused dielectric properties of BNZT ceramics to enhance. Microstructural observation carried out employing SEM showed that average grain size decreased when addition of Ti increased. Grain size difference of BNZT above 0.4 mole fraction of Ti4+ displayed a significant increase of dielectric constant at room temperature.  相似文献   

19.
Nb-doped and Y-deficient yttrium aluminum garnet ceramics were designed and synthesized using the solid-state reaction method according to the chemical equation Y3?xAl5NbxO12+x (0 ≤ x ≤ 0.16). The phase composition, sintering behavior, microstructure, and microwave dielectric properties were investigated as functions of the composition and sintering temperature. A single-phase solid solution of yttrium aluminum garnet structure formation was observed in the range of 0 ≤ x ≤ 0.1. Further increments in x prompted the precipitation of the YNbO4 secondary phase at the grain boundary of Y3Al5O12. The complexity of the phase composition degrades the micromorphology and dielectric properties of the ceramics to varying degrees. Transmission electron microscopy results show that the lattice exhibits additional symmetry, which is closely related to the ultrahigh Q×f values of the ceramics. Effectively improving the sintering behaviour and suppressing the secondary phase by simultaneously doping with Nb5+ and reducing the yttrium stoichiometry. Finally, excellent microwave dielectric properties of εr ~ 10.99, Q×f ~ 280,387 GHz (13.5 GHz), and τf ~ ? 34.7 ppm/°C can be obtained in x = 0.1 (Y2.9Al5Nb0.1O12.1) sintered at 1700 °C for 6 h.  相似文献   

20.
New low loss and low-sintering temperature co-fired Ba3-xCuxTi4Nb4O21 (BCTN, 0 ≤ x ≤ 0.12) ceramics with 0.60 wt% Li2O-B2O3-SiO2-CaO-Al2O3 (LBSCA) glass were prepared by solid-state reaction methodology. This work showed that CuO and LBSCA were effective sintering aid, which improved the densification and decreased sintering temperature. Thus, the excellent microwave dielectric properties of BCTN ceramics (x = 0.08) were obtained after sintering at 925 ℃ with εr ~ 44.18, Q×f ~ 17,860 GHz (@ 5.6 GHz) and τf ~ 94.76 ppm/℃. Q×f value was increased nearly 3-fold compared to pure BTN ceramics (~ 6090 GHz). Based on the P-V-L bond theory, the Ti-O and Nb-O bonds together contributed greatly to εr. The Nb-O bonds was the main factor affecting the internal loss on Q×f. The τf closely related to the oxygen octahedron [Ti1/Nb1O6]. The BCTN ceramics would not react with Ag electrodes, and had great potential to be used in LTCC microwave devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号