首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this work, spinel-structured MgAl2-x(Zn0.5Mn0.5)xO4 (0 ≤ x ≤ 0.08) single-phase ceramics were prepared through a solid-state reaction route. The substitution of (Zn0.5Mn0.5)3+ for Al3+ at the octahedral site affected the degree of inversion of A/B lattice sites, bond length/strength/valence, and covalency of metal-oxygen bond in the tetrahedron and hence microwave dielectric properties of MgAl2O4. The variation in εr and tanδ of ceramics is investigated in the millimeter wave-terahertz frequency band by combining infrared reflection spectrum and terahertz time-domain spectroscopy. A high Q×f value of 111,010 GHz @ 12.01 GHz, low εr = 8.3, and slightly lower τf = −60 ppm/°C is obtained for MgAl1.98Zn0.01Mn0.01O4 ceramics, which is tuned by adding a small amount of SrTiO3. The composite ceramics exhibited a near-zero τf (2.8 ppm/°C), high Q×f (55,400 GHz @ 11.15 GHz), and low εr (= 8.5), showing a great potential application prospect for 5G/6G wireless communication.  相似文献   

2.
Nb-doped and Y-deficient yttrium aluminum garnet ceramics were designed and synthesized using the solid-state reaction method according to the chemical equation Y3?xAl5NbxO12+x (0 ≤ x ≤ 0.16). The phase composition, sintering behavior, microstructure, and microwave dielectric properties were investigated as functions of the composition and sintering temperature. A single-phase solid solution of yttrium aluminum garnet structure formation was observed in the range of 0 ≤ x ≤ 0.1. Further increments in x prompted the precipitation of the YNbO4 secondary phase at the grain boundary of Y3Al5O12. The complexity of the phase composition degrades the micromorphology and dielectric properties of the ceramics to varying degrees. Transmission electron microscopy results show that the lattice exhibits additional symmetry, which is closely related to the ultrahigh Q×f values of the ceramics. Effectively improving the sintering behaviour and suppressing the secondary phase by simultaneously doping with Nb5+ and reducing the yttrium stoichiometry. Finally, excellent microwave dielectric properties of εr ~ 10.99, Q×f ~ 280,387 GHz (13.5 GHz), and τf ~ ? 34.7 ppm/°C can be obtained in x = 0.1 (Y2.9Al5Nb0.1O12.1) sintered at 1700 °C for 6 h.  相似文献   

3.
Low-permittivity ZnAl2-x(Zn0.5Ti0.5)xO4 ceramics were synthesized via conventional solid-state reaction method. A pure ZnAl2O4 solid-state solution with an Fd-3m space group was achieved at x ≤ 0.1. Results showed that partial substitution of [Zn0.5Ti0.5]3+ for Al3+ effectively lowered the sintering temperature of the ZnAl2O4 ceramics and remarkably increased the quality factor (Q × f) values. Optimum microwave dielectric properties (εr = 9.1, Q × f = 115,800 GHz and τf = −78 ppm/°C) were obtained in the sample with x = 0.1 sintered at 1400°C in oxygen atmosphere for 10 h. The temperature used for the sample was approximately 250°C lower than the sintering temperature of conventional ZnAl2O4 ceramics.  相似文献   

4.
New low loss and low-sintering temperature co-fired Ba3-xCuxTi4Nb4O21 (BCTN, 0 ≤ x ≤ 0.12) ceramics with 0.60 wt% Li2O-B2O3-SiO2-CaO-Al2O3 (LBSCA) glass were prepared by solid-state reaction methodology. This work showed that CuO and LBSCA were effective sintering aid, which improved the densification and decreased sintering temperature. Thus, the excellent microwave dielectric properties of BCTN ceramics (x = 0.08) were obtained after sintering at 925 ℃ with εr ~ 44.18, Q×f ~ 17,860 GHz (@ 5.6 GHz) and τf ~ 94.76 ppm/℃. Q×f value was increased nearly 3-fold compared to pure BTN ceramics (~ 6090 GHz). Based on the P-V-L bond theory, the Ti-O and Nb-O bonds together contributed greatly to εr. The Nb-O bonds was the main factor affecting the internal loss on Q×f. The τf closely related to the oxygen octahedron [Ti1/Nb1O6]. The BCTN ceramics would not react with Ag electrodes, and had great potential to be used in LTCC microwave devices.  相似文献   

5.
The (1?x)Mg2Al4Si5O18xTiO2 |(1?x)MAS‐xT| (0 ≤ x ≤ 0.35) cordierite ceramics are fabricated by solid‐state reaction method for obtaining near‐zero temperature coefficient of resonant frequency (τf). The XRD and SEM results show that (1?x)MAS‐xT (0 ≤ x ≤ 0.10) ceramics exhibit single cordierite solid solution, whereas as 0.15 ≤ x ≤ 0.35, present composite phases of Mg2Al4Si5O18 solution and TiO2. Rietveld refinements of XRD data suggest that the [(Si4Al2)O18] hexagonal shape in cordierite structure happens to alternate change from nonsymmetrical hexagonal rings to almost centrosymmetrical equilateral rings as x increases to 0.10 comparing to that of x = 0. As Ti4+ ions squeeze into the [(Si4Al2)O18] rings structure, the orientation and shapes of the rings begin to rotate and expand from initial state of [1–20] (x = 0) to near [210] direction (x = 0.10), and then continue to expand toward close to [110] direction (x = 0.25). Due to centrosymmetry adjustment of [(Si4Al2)O18] hexagonal rings and of other microstructure factors improvement, the (1?x)MAS‐xT (x = 0.10) cordierite solution achieves optimum quality factor Qf: εr = 6.3, Qf = 55 400 GHz (17.6 GHz), τf = ?21 ppm/°C. The (1?x)MAS‐xT (x = 0.25) composites obtain a near‐zero temperature coefficient of resonance frequency: εr = 6.8, Qf = 37 800 GHz (18.4 GHz), τf = ?0.2 ppm/°C.  相似文献   

6.
New high-performance materials have attracted much attention due to ever-increasing demands for advanced communication technologies. In present work, Ge-doped Li3+xMg2Nb1-xGexO6 (0 ≤ x ≤ 0.08) ceramics are prepared via solid-state reaction route. Microstructural analysis and crystal structure refinement reveal that moderate substitution can promote grain growth and modify crystal structure, thus enhancing microwave dielectric properties of composites. In that sense, special attention is paid to the behavior of dielectric constant εr, quality factor Q×f, and frequency temperature coefficient τf of final products. In these systems, εr parameter depends on the density, miscellaneous phases, and polarizability; Q×f value is shown to be influenced by Nb-O bond energy, grain size, and bulk density; finally, τf characteristic refers to Nb-O bond valence and NbO6 octahedral distortion. Among above ceramics, Li3.02Mg2Nb0.98Ge0.02O6 composite sintered at 1250 °C exhibits outstanding microwave absorption performance with εr = 15.32, Q×f = 969 88 GHz, and τf = ?8.25 ppm/°C.  相似文献   

7.
《Ceramics International》2021,47(20):28487-28492
In this work, the microwave dielectric properties of Ba4(Nd1-yBiy)28/3Ti18-x(Al1/2Ta1/2)xO54(0≤x≤2, 0.05≤y≤0.2) ceramics co-substituted by A/B-site were studied. Firstly, (Al1/2Ta1/2)4+ was used for substitution at B-site. At 0≤x≤1.5, the above mentioned ceramic was found to exist in single-phase tungsten bronze structure, but at x = 2.0, the secondary phase appeared. Although the dielectric constant decreased by doping the (Al1/2Ta1/2)4+, but the quality factor was observed to improve by 40% and the temperature coefficient of resonant frequency decreased by 75%. Based on the above results, Bi3+ was introduced to Ba4Nd28/3Ti17(Al1/2Ta1/2)O54. The introduction of Bi3+ reduced the sintering temperature, greatly improved the dielectric constant, and ultimately decreased the temperature coefficient of resonant frequency, but it led to deterioration of quality factor. At last, with appropriate site-substitution content control (x = 1.0,y = 0.15), excellent comprehensive properties (εr = 89.0, Q × f = 5844 GHz @ 5.89 GHz,TCF = +8.7 ppm/°C) were obtained for the samples sintered at 1325 °C for 4 h.  相似文献   

8.
Dense (1 ? x) La[Al0.9(Mg0.5Ti0.5)0.1]O3x CaTiO3 ceramics were synthesized via solid-state reaction. The crystal structure and microwave dielectric properties of the ceramics were systematically investigated. Rietveld refinement revealed that when x ≤ 0.2, the ceramics had a rhombohedral structure with an R-3c space group. When x ≥ 0.5, the ceramics had an orthorhombic structure with a Pbnm space group. Selected area electron diffraction and Raman spectroscopy analyses proved that the microwave dielectric ceramics had a B-site order, which accounted for the great improvement in microwave dielectric properties. The content of oxygen vacancies was identified through X-ray photoelectron spectroscopy, and the change rule of Q × f was closely related to oxygen vacancy content. The perturbation of A-site cations had an important influence on dielectric constant. Specifically, with the increase in Ti4+ content, the perturbation effect of the A-site cations was enhanced and dielectric constant increased. When x = 0.65, the temperature coefficient of resonant frequency of the (1 ? x) La[Al0.9(Mg0.5Ti0.5)0.1]O3x CaTiO3 microwave dielectric ceramics was near zero. The optimal microwave dielectric properties of 0.35LaAl0.9(Mg0.5Ti0.5)0.1O3–0.65CaTiO3 were εr = 44.6, Q × f = 32,057 GHz, and τf = +2 ppm/°C.  相似文献   

9.
(Mg1?xZnx)Al2O4 transparent ceramics were fabricated by spark plasma sintering technique at 1325°C for 10 min. A small mount of Zn2+ addition to MgAl2O4 ceramics was very effective to the performance improvement, while further increase in Zn‐doped content would give rise to the optical transmittance deterioration. The optical and microwave dielectric properties of MgAl2O4 transparent ceramics were improved by Zn substitution for Mg. The in‐line transmittance of the (Mg1?xZnx)Al2O4 (= 0.02) ceramics can be as high as 70% at λ = 550 nm and 86.5% at λ = 2000 nm, respectively. The dielectric constant εr of (Mg1?xZnx)Al2O4 just varied from 8.32 to 8.54, however, the Q × f value increased significantly up to a maximal value of 66,000 GHz at = 0.02. Moreover, the τf of (Mg1?xZnx)Al2O4 transparent ceramics changed from ?74 to ?65.5 ppm/°C. With the increasing of Zn‐doped content, the average grain size and the porosity increased, which was the primary reason for the change in optical and microwave dielectric properties.  相似文献   

10.
The phase composition, microstructure, microwave dielectric properties of (Al0.5Nb0.5)4+ co-substitution for Ti site in LiNb0.6Ti0.5O3 ceramics and the low temperature sintering behaviors of Li2O-B2O3-SiO2 (LBS) glass were systematically discussed. XRD patterns and EDS analysis result confirmed that single phase of Li1.075Nb0.625Ti0.45O3 solid solution was formed in all component. The increase of dielectric constant (εr) is ascribed to the improvement of bulk density. The restricted growth of grain has a negative influence on quality factor (Q×f) value. The τf value could be continuously shifted to near zero as the doping content increases. Great microwave dielectric properties were obtained in LiNb0.6Ti(0.5-x)(Al0.5Nb0.5)xO3 ceramics (x?=?0.10) when sintered at 1100?℃ for 2?h: εr =?70.34, Q×f =?5144?GHz, τf =?4.8?ppm/℃. The sintering aid, LBS glass, can effectively reduce the temperature and remain satisfied microwave performance. Excellent microwave dielectric properties for x?=?0.10 were obtained with 1.0?wt% glass: εr =?70.16, Q×f =?4153?GHz (at 4?GHz), τf =?-0.65?ppm/℃ when sintered at 925?℃ for 2?h.  相似文献   

11.
Novel high quality factor microwave dielectric ceramics (1?x)ZrTiO4?x(Mg1/3Nb2/3)TiO4 (0.325≤x≤0.4) and (ZrTi)1?y(Mg1/3Nb2/3)yO4 (0.2≤y≤0.5) with the addition of 0.5 wt% MnCO3 in the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system were prepared, using solid‐state reaction method. The relationship between the structure and microwave dielectric properties of the ceramics was studied. The XRD patterns of the sintered samples reveal the main phase belonged to α‐PbO2‐type structure. Raman spectroscopy and infrared reflectivity (IR) spectra were employed to evaluate phonon modes of ceramics. The 0.65ZrTiO4?0.35(Mg1/3Nb2/3)TiO4?0.5 wt% MnCO3 ceramic can be well densified at 1240°C for 2 hours and exhibits good microwave dielectric properties with a relative permittivity (εr) of 42.5, a quality factor (Q×f) value of 43 520 GHz (at 5.9 Ghz) and temperature coefficient of resonant frequency (τf) value of ?5ppm/°C. Furthermore, the (ZrTi)0.7(Mg1/3Nb2/3)0.3O4?0.5 wt% MnCO3 ceramic sintered at 1260°C for 2 hours possesses a εr of 31.8, a Q×f value of 35 640 GHz (at 6.3 GHz) and a near zero τf value of ?5.9 ppm/°C. The results demonstrated that the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system with excellent properties was a promising material for microwave electronic device applications.  相似文献   

12.
The diopside ceramics with a formula of Ca(Mg1−xAlx)(Si1−x/2Alx/2)2O6 (x=0.01–0.3) were synthesized via a traditional solid-state reaction method, and their solid solubility, sintering behavior and microwave dielectric properties were investigated. The results revealed that the solubility limit of Al2O3 in Ca(Mg1−xAlx)(Si1−x/2Alx/2)2O6, which is defined as x, was between 0.15 and 0.2, and a second phase of CaAl2SiO6 presented when the x value reached 0.2. Appropriate Al3+ substitution for Mg2+ and Si4+ could promote the sintering process and lower the densification temperature, and a broadened densification temperature range of 1250–1300 °C was obtained for the compositions of x=0.08–0.15. With the increase of the x value, the dielectric constant (εr) increased roughly linearly, and the temperature coefficient of frequency (τf) showed a rising trend. The Q×f values increased from 57,322 GHz to 59,772 GHz as the x value increased from 0.01 to 0.08, and then they were saturated in the range of x=0.08–0.2. Further increase of the x value (x≥0.25) deteriorated the microwave dielectric properties. Good microwave dielectric properties of εr=7.89, Q×f=59,772 GHz and τf=−42.12 ppm/°C were obtained for the ceramics with the composition of x=0.08 sintered at 1275 °C.  相似文献   

13.
Microwave communication for 5 G signals is the preferred solution in modern communication networks where fiber optic cables are difficult to deploy or base stations operate incorrectly. Here, a novel Zn1-x(Li0.5Bi0.5)xMoO4 (ZLBMO∼xLB, x = 0.09) ceramic with excellent microwave dielectric properties (εr = 10.5, Q×f = 43,001 GHz, τf = −21.5 ppm/°C) is developed using solid-state reaction method. The sintering temperature is successfully reduced from 850 °C to 725 °C. For the first time, an all-ceramic device for multichannel transmission of 5 G signals is designed using this ceramic material. This device exhibits transverse dual-channel, longitudinal dual-channel, and four-channel transmission under x-, y- and 45°-polarized waves incidence, respectively. The number of channels can be changed by switching the polarization state of the incident wave. This functionality is verified by simulation results of the electric field and phase. This work provides new ideas for the combination of dielectric ceramics and communication devices.  相似文献   

14.
《Ceramics International》2021,47(22):31732-31739
The microwave dielectric properties of spinel-structured Li(Mg0.5Ti0.5)xGa5−xO8 (0 ≤ x ≤ 1) ceramics were researched together with their microstructures. The X-ray diffraction and Raman spectroscopic revealed that an ordered spinel structure in 1: 3 B-site ordering with space group P4332 was formed in the composition range of 0 = x ≤ 0.25, and a disordered spinel with space group Fd-3m was formed in 0.5 = x ≤ 1. All the ceramics were compact with uniform grain, clear grain boundaries and high relative density (ρrelative ≥ 95 %). With the substitution of [Mg0.5Ti0.5]3+ for Ga3+ increased, the dielectric constant (εr) increased from 10.48 to 11.28, which was related to the increased molar ionic polarizability (αtheo/Vm) and B-site bond ionicity. The temperature coefficient of the resonant frequency (τf) slightly increased from −66.27 ppm/°C to −61.45 ppm/°C, due to the decrease of B-site bond valence. The Q × f value firstly decreased from 125,400 GHz to 50,381 GHz and then increased to 85,360 GHz, which was affected by the intrinsic loss analyzed by lattice energy. The optimal microwave dielectric properties were obtained for LiMg0.5Ti0.5Ga4O8 ceramic (x = 1) sintered at 1260 °C with εr = 11.28, Q × f = 85,360 GHz and τf = −61.45 ppm/°C.  相似文献   

15.
《Ceramics International》2022,48(16):23044-23050
Nd[(Mg1-xZnx)1/2Ti1/2]O3 perovskite ceramics (x = 0, 0.2, 0.4, 0.6, 0.8) are prepared by the solid-state reaction method. The effects of Zn2+ substitution on the structure, microstructure, especially the B-site 1:1 cation ordering and microwave dielectric properties have been investigated. Sintered Nd[(Mg1-xZnx)1/2Ti1/2]O3 ceramics all adopt dense microstructure, along with increased dimensional uniformity as Zn2+ substitution. All the ceramics are confirmed to have B-site 1:1 ordered monoclinic perovskite structure with P21/n space group. Atomic mass difference of B-site elements might be an important factor affecting the B-site 1:1 cation ordering. HRSTEM observation suggest that the doped Zn2+ cations have roughly entered the Mg2+ sites to promote 1:1 cation ordering. The degree of the 1:1 cation ordering can be negatively reflected by the full width at half maximum (FWHM) of F2g(B) mode at 372 cm?1 in Raman spectra. With Zn2+ doping, the degree of the 1:1 cation ordering first increases then decreases, and reaches its maximum at x = 0.6. Meanwhile the best combination of microwave dielectric properties is obtained, as εr = 31.4, Q × f = 74,000 GHz, τf = ?44 ppm/°C. It is found that the long-range ordering not only decreases the dielectric loss but also affects the dielectric constant, providing a theoretical foundation to understand further the correlation between ionic configuration and microwave dielectric properties.  相似文献   

16.
In this study, crystal structure and microwave dielectric properties of phosphate CaMgP2O7 were comprehensively investigated. As a novel microwave dielectric ceramic, CaMgP2O7 consists of highly dense structure with optimal microwave dielectric properties (εr = 7.8 ± 0.124, Q×f = 13,165 ± 836 GHz, and τf = −85.04 ± 1.205 ppm/℃) at a low sintering temperature (950 ℃). The Rietveld refinement of XRD patterns revealed that CaMgP2O7 belongs to a triclinic system with P-1 symmetry type. Moreover, the substitution of Zn2+ for Mg2+ in CaMgP2O7 can further reduce the sintering temperature, effectively promote the densification process, and improve the Q×f value. The effects of porosity (or density) and chemical bond characteristics on the performance of CaMg1-xZnxP2O7 ceramics were carefully analyzed as well. Outstanding performance (εr = 8.05 ± 0.12, Q×f = 20,670 ± 923 GHz, and τf = −87.59 ± 3.24 ppm/℃) can be achieved for the CaMg0.84Zn0.16P2O7 ceramic sintered at 875 ℃ for 3 h.  相似文献   

17.
《Ceramics International》2023,49(1):202-209
The phase compositions and microwave dielectric properties of Sn-deficient Ca2Sn2Al2O9 ceramics in this study were explored. The CaSnO3 and SnO2 second phases existed at Ca2Sn2-xAl2O9-2x (x = 0) ceramic. Single-phase Ca2Sn2Al2O9 ceramics were obtained at 0.08 ≤ x ≤ 0.1, and the orthorhombic structure with the Pbcn space group of Ca2Sn2Al2O9 was verified. For multi-phase Ca2Sn2-xAl2O9-2x (0 ≤ x ≤ 0.06) ceramics, their microwave dielectric properties were mainly affected by second phase contents, and their Q × f values increased gradually with the rise in x. High Q × f (105,700 GHz at 12.99 GHz) was obtained by the Ca2Sn2-xAl2O9-2x (x = 0.08) ceramic with high intrinsic Q × f (175,000 GHz). The large deviation between measured Q × f values and fitted intrinsic Q × f values could be ascribed to the Sn4+ vacancies of the Sn-deficient Ca2Sn2Al2O9 ceramics. The Ca2Sn2-xAl2O9-2x (0 ≤ x ≤ 0.1) ceramics presented large negative τf values, and this τf was mainly affected by τε. Meanwhile, the Ca2Sn2-xAl2O9-2x (x = 0.08) ceramic achieved optimal microwave dielectric properties (εr = 8.3, Q × f = 105,700 GHz at 12.99 GHz and τf = ?63.7 ppm/°C), indicating the good feature of this material for millimetre-wave applications.  相似文献   

18.
《Ceramics International》2022,48(14):20096-20101
A series of Mn2+-doped Mg1-xMnxTa2O6 (x = 0.02, 0.04, 0.06, 0.08, 0.10, 0.12) ceramics were synthesized by solid-state reaction method. The influence of introducing Mn–O bonds as a partial replacement for Mg–O bonds on the lattice and microwave dielectric properties was systematically investigated. XRD and Rietveld refinement confirm that Mn2+ occupies the 2a Wyckoff position and forms a pure trirutile phase. Moreover, based on the chemical bond theory, the dielectric constant is mainly affected by the ionicity of the Ta–O bond. The lattice and dielectric properties remain relatively stable with Mn2+ doping below 0.1, but excessive Mn2+ doping leads to pronounced distortion of the lattice, which is not beneficial for lattice stability and microwave dielectric properties. Introducing an appropriate amount of Mn–O bonds with high bond dissociation energy facilitates MgO6 octahedron stability, which improves the thermal stability of the lattice. Accordingly, the microwave dielectric properties for 0.06 Mn2+-doped MgTa2O6 ceramics were determined: εr = 28, Q × f = 105,000 GHz (at 7.5 GHz), τf = 19.5 ppm/°C.  相似文献   

19.
Cordierite (Mg2Al4Si5O18) is one of the silicates with low dielectric constant (ɛr), which are expected for good candidate of millimeter wave dielectrics. Microwave dielectric properties of Ni substituted cordierite solid solutions; (Mg1−xNix)2Al4Si5O18 have been investigated. (Mg1−xNix)2Al4Si5O18 with no secondary phase was obtained in the compositions x range from 0 to 0.1. It was found that a very small amount of Ni substitution was effectively increased of the quality factor (Qf) value and the highest Qf value of 99,110 GHz was obtained in the composition x = 0.1. No remarkable composition dependence of the temperature coefficient of resonance frequency (τf) was observed in the range from x = 0.05 to 0.2, On the other hand, τf abruptly shifted toward negative value with increasing x from 0.3 to 0.5. The correlation between the crystal structure of cordierite and the microwave dielectric properties, particularly Qf is discussed.  相似文献   

20.
Ca3SnSi2-xGexO9 (0 ≤ x ≤ 0.8) and (1–y) Ca3SnSi1.6Ge0.4O9 – y CaSnSiO5 – 2 wt% LiF (y = 0.4 and 0.5) microwave dielectric ceramics were prepared by traditional solid-state reaction through sintering at 1250°C–1425°C for 5 h and at 875°C for 2 h, respectively. Ge4+ replaced Si4+, and Ca3SnSi2-xGexO9 (0 ≤ x ≤ 0.4) solid solutions were obtained. At 0.1 ≤ x ≤ 0.4, the Ge4+ substitution for Si4+ decreased the sintering temperature of Ca3SnSi2-xGexO9 from 1425 to 1300°C, the SnO6 octahedral distortions, and the average CaO7 decahedral distortions, which affected the τf value. The large average decahedral distortions corresponded with nearer-zero τf values at Ca3SnSi2-xGexO9 (0.1 ≤ x ≤ 0.4) ceramics. The τf value and sintering temperature of Ca3SnSi2-xGexO9 (x = 0.4) ceramic were adjusted to near-zero by CaSnSiO5 and decreased to 875°C upon the addition of 2 wt% LiF. The (1 – y) Ca3SnSi1.6Ge0.4O9 – y CaSnSiO5 – 2 wt% LiF (y = 0.5) ceramic sintered at 875°C for 2 h exhibited good microwave dielectric properties: εr = 10.3, Q × = 14 300 GHz (at 12.2 GHz), and τf = ‒5.8 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号