首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nacre-inspired Al-Si/TiB2 composites were successfully prepared by freeze casting and pressure infiltration. The microstructures and mechanical properties of nacre-inspired Al-Si/TiB2 composites were studied by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and mechanical testing. The results show that the high performance of Al-Si/TiB2 composites can be attributed to the clean interfaces between TiB2 and Al and several toughening mechanisms, such as crack blunting, crack branching, crack deflection, plastic deformation of Al layer, and bridging of the uncracked fracture process zone. Specifically, the compressive strength, three-point bending strength and KIC of composites corresponding to LS were 640–710 MPa, 629 MPa, and 16.4 MPa m1/2, respectively. The fracture behaviors of the Al-Si/TiB2 composites have been discussed in detail in this work. It was found that single cracks were accompanied by the propagation of multiple micro-cracks in the layered composites. The precipitation of Si particles at the TiB2/α-Al interface and the Al phases infiltrated in the TiB2 layers play a great role in the formation of single crack fractures and multiple micro-cracks fractures, respectively, in the nacre-inspired Al-Si/TiB2 composites.  相似文献   

2.
We prepared B4C/Al laminated composites via ice-templating and gas-aided pressure infiltration and investigated the effects of TiO2 addition on the microstructures and mechanical properties of the composites. The incorporation of TiO2 led to the formation of TiB2 after sintering, reduced the formation of harmful phases and increased the strength of ceramic architectures. However, its excessive addition resulted in the cracking of ceramic layers and the formation of metal strips after Al infiltration. The bending strength, fracture toughness and work of fracture of the composites first increased and then decreased with increasing initial TiO2 content, reaching maxima of 420?±?20?MPa, 44?±?2?MPa?m1/2 and 5002?±?175?J?m?2, respectively. The specific strength and toughness are comparable to those of titanium alloys. Furthermore, fracture modes and toughening mechanisms were thoroughly addressed by analyzing crack propagation paths and fracture surface morphologies. Crack deflection and metal bridging are two primary extrinsic toughening mechanisms.  相似文献   

3.
B4C-TiB2-SiC composites were fabricated via hot pressing using ball milled B4C, TiB2, and SiC powder mixtures as the starting materials. The impact of ball milling on the densification behaviors, mechanical properties, and microstructures of the ceramic composites were investigated. The results showed that the refinement of the powder mixtures and the removal of the oxide impurities played an important role in the improvement of densification and properties. Moreover, the formation of the liquid phases during the sintering was deemed beneficial for densification. The typical values of relative density, hardness, bending strength, and fracture toughness of the composites reached 99.20%, 32.84?GPa, 858?MPa and 8.21?MPa?m1/2, respectively. Crack deflection, crack bridging, crack branching, and microcracking were considered to be the potential toughening mechanisms in the composites. Furthermore, numerous nano-sized intergranular/intragranular phases and twin structures were observed in the B4C-TiB2-SiC composite.  相似文献   

4.
Monolithic B4C, B4C–TiB2, and B4C–TiB2–graphene nanoplatelets (GNPs) were fabricated by hot pressing (HP) at 1900 °C for 1 h under an axial pressure of 30 MPa. The microstructures and mechanical and electrical properties of the B4C composites were investigated. The results show that the GNPs are distributed homogeneously in B4C-based ceramic composites. Compared with monolithic B4C, the TiB2–GNPs-containing B4C composite exhibits an approximately 68 % increase in flexural strength and a 169 % increase in fracture toughness due to the synergistic effects of TiB2 particles and GNPs. The toughening mechanisms mainly include TiB2 crack deflection, crack branching, transgranular fracture and GNPs crack deflection, crack bridging, and GNPs pull-out. Additionally, the electrical conductivity of the B4C composite reinforced with dual fillers is three orders of magnitude higher than that of monolithic B4C due to the establishment of a conductive network. The addition of GNPs can efficiently connect the isolated conductive TiB2 particles in the B4C matrix and provides an additional channel for electron migration.  相似文献   

5.
B4C-TiB2-SiC composites toughened by (TiB2-SiC) agglomerates were prepared via reactive hot pressing with B4C and TiSi2 as raw materials. Phase composition, microstructure, and mechanical properties of the fabricated composites were investigated. The function of (TiB2-SiC) agglomerates was analyzed, and the strengthening and toughening mechanism were also discussed. Results indicated that some of the in situ formed TiB2 and SiC were interlocked to form special (TiB2-SiC) agglomerates in the matrix. The good comprehensive performances of 510 MPa flexural strength, 5.84 MPa·m1/2 fracture toughness, and 31.93 GPa hardness were obtained in the composites fabricated with 30 wt% TiSi2. The in situ introduced fine TiB2 and SiC grains refined the grains of B4C due to the pinning effect, which enhanced the strength. The special (TiB2-SiC) agglomerates and the existing toughening phenomena such as crack deflection, branching, and microcrack regions induced by the mismatch of thermal expansion coefficients, had cumulative effects on improving the fracture toughness.  相似文献   

6.
《Ceramics International》2023,49(3):4403-4411
B4C-20 wt% TiB2 ceramics were fabricated by hot pressing B4C and ball-milled TiB2 powder mixtures. The effects of the TiB2 particle size on the microstructure and mechanical properties were investigated. The results showed that the TiB2 particle size played an important role in the mechanical properties of the B4C–TiB2 ceramics. In addition, SiO2 introduced by ball milling was beneficial for densification but detrimental to the mechanical properties of the B4C–TiB2 ceramics. The typical values of relative density, hardness, flexural strength, and fracture toughness of the ceramics were 99.20%, 35.22 GPa, 765 MPa, and 7.69 MPa m1/2, respectively. The toughening mechanisms of the B4C–TiB2 ceramics were explained by crack deflection and crack branching. In this study, the effects of high pressure and temperature caused liquefying SiO2 to migrate to the surface of B4C–TiB2 and react with diffused carbon source in the graphite foil to form a 30 μm thick SiC layered structure, which improved the high-temperature oxidation resistance of the material. The unique SiC layered structure overcame the insufficient oxidation resistance of B4C and TiB2, thereby improving the oxidation resistance of the ceramics under high-temperature service conditions.  相似文献   

7.
Boron carbide (B4C) ceramic composites with excellent mechanical properties were fabricated by hot-pressing using B4C, silicon carbide (SiC), titanium boride (TiB2), and magnesium aluminum silicate (MAS) as raw materials. The influences of SiC and TiB2 content on the microstructural evolution and mechanical properties of the composites were systematically investigated. The mechanism by which MAS promotes the sintering process of composites was also investigated. MAS exists in composites in the form of amorphous phase. It can effectively remove the oxide layer from the surface of ceramic particles during the high temperature sintering process. The typical values of relative density, hardness, bending strength, and fracture toughness of B4C–SiC–TiB2 composites are 99.6%, 32.61 GPa, 434 MPa, and 6.20 MPa m1/2, respectively. Based on the microstructure observations and finite element modeling, the operative toughening mechanism is mainly attributed to the crack deflection along the grain boundary, which results from the residual stress field generated by the thermal expansion mismatch between B4C and TiB2 phase.  相似文献   

8.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   

9.
B4C–TiB2–SiC composites toughened by composite structural toughening phases, which are the units of (TiB2–SiC) composite, were fabricated through reactive hot pressing with B4C, TiC, and Si as raw materials. The units of (TiB2–SiC) composite with the size of 10‐20 μm are composed of interlocking TiB2 and SiC with the size of 1‐5 μm. The addition of TiC and Si can effectively promote the sintering of B4C ceramics. The relative densities of all the B4C composites with different contents of TiB2 and SiC are close to completely dense (98.9%‐99.4%), thereby resulting in superior hardness (33.1‐36.2 GPa). With the increase in the content of TiB2 and SiC, the already improved fracture toughness of the B4C composite continuously increases (5.3‐6.5 MPa·m1/2), but the flexure strength initially increases and then decreases. When cracks cross the units of the (TiB2–SiC) composite, the cracks deflect along the interior boundary of TiB2 and SiC inside the units. As the crack growth path is lengthened, the crack propagation direction is changed, thereby consuming more crack extension energy. The cumulative contributions improve the fracture toughness of the B4C composite. Therefore, the composite structural toughening units of the (TiB2–SiC) composite play an important role in reinforcing the fracture toughness of the composites.  相似文献   

10.
《应用陶瓷进展》2013,112(5):282-287
Without impurity phases detected, fully dense (TiB2?+?SiC)/Ti3SiC2 composites have been successfully synthesised by in-situ reaction hot pressing. The effect of TiB2 content on phase composite, sintering properties, microstructure, and mechanical properties of the composites were thoroughly investigated. With TiB2 content increasing from 0 to 50?vol.-%, the flexural strength increases first and then decreases, whereas fracture toughness, hardness and modulus show a linear increase. The maximum strength of 826?MPa was obtained at 20?vol.-% TiB2. On the whole, the (TiB2?+?SiC)/Ti3SiC2 composites exhibit a superior comprehensive mechanical properties superior to other reported Ti3SiC2-based composites reinforced by singular reinforcement. The significant strengthening and toughening effect induced by the in-situ incorporated TiB2 can be ascribed to the unique properties of TiB2 and the synergistic action of many mechanisms including particle reinforcement, pulling out of grains, crack deflection and grain refinement strengthening.  相似文献   

11.
One kind of TiB2/TiC composite ceramic tool material toughened by graphene nanosheets was fabricated by spark plasma sintering. Effects of graphene nanosheets on microstructure, mechanical properties and toughening mechanisms were investigated. The results indicated that TiB2/TiC with 0.1?wt% graphene nanosheets sintered at 1800?°C with the holding time of 5?min obtained full densification and optimal mechanical properties. Its fracture toughness and Vickers hardness were 7.9?±?1.2?MPa?m1/2 and 20.0?±?0.7?GPa, respectively. Excess graphene nanosheets had no effects to toughness improvement. Fracture toughness was increased by 31.7% in comparison with the TiB2/TiC without graphene nanosheets. Toughness enhancement mainly benefited from crack bridging, also slip-stick effect of graphene made it hard to detach and effectively restrained crack extension.  相似文献   

12.
Spark plasma sintering (SPS) was employed to consolidate powder specimens consisting of B4C and various B4C-TiB2 compositions. SPS allowed for consolidation of pure B4C, B4C-13 vol.%TiB2, and B4C-23 vol.%TiB2 composites achieving ≥99 % theoretical density without sintering additives, residual phases (e.g., graphite), and excessive grain growth due to long sintering times. Electron and x-ray microscopies determined homogeneous microstructures along with excellent distribution of TiB2 phase in both small and larger-scaled composites. An optimized B4C-23 vol.%TiB2 composite with a targeted low density of ~3.0 g/cm3 exhibited 30–35 % increased hardness, fracture toughness, and flexural bend strength compared to several commercial armor-grade ceramics, with the flexural strength being strain rate insensitive under quasistatic and dynamic loading. Mechanistic studies determined that the improvements are a result of a) no residual graphitic carbon in the composites, b) interfacial microcrack toughening due to thermal expansion coefficient differences placing the B4C matrix in compression and TiB2 phase in tension, and c) TiB2 phase aids in crack deflection thereby increasing the amount of intergranular fracture. Collectively, the addition of TiB2 serves as a toughening and strengthening phase, and scaling of SPS samples show promise for the manufacture of ceramic composites for body armor.  相似文献   

13.
Based on thermodynamic analysis, highly dense (TiB2 + TiC)/Ti3SiC2 composite ceramics with different TiB2 volume contents were in situ fabricated in situ by hot-pressing at 1500 °C. Laminar Ti3SiC2 grains, columnar TiB2 grains and equiaxed TiC grains were clearly identified from microstructural observation; grain boundaries were clean. The increase of TiB2 volume content significantly restrains the grain growth of the Ti3SiC2 matrix. As the content of TiB2 increases from 5 vol.% to 20 vol.%, the bending strength and fracture toughness of the composites both increase and then decrease, whereas the Vickers hardness increases linearly from 6.13 GPa to 11.5 GPa. The composite with 10 vol.% TiB2 shows the optimized microstructure and optimal mechanical properties: 700 MPa for bending strength; 9.55 MPa m1/2 for fracture toughness. These are attributed to the synergistic action of strengthening and toughening mechanisms such as particulate reinforcement, crack deflection, grain's pull-out and fine-grain toughening, caused by the columnar TiB2 grains and equiaxed TiC grains.  相似文献   

14.
Fully dense (TiB2 + SiC) reinforced Ti3SiC2 composites with 15 vol% TiB2 and 0–15 vol% SiC were designed and synthesized by in situ reaction hot pressing. The increase in SiC content promoted densification and significantly inhibited the growth of Ti3SiC2 grains. The in situ incorporated TiB2 and SiC reinforcements showed columnar and equiaxed grains, respectively, providing a strengthening–toughening effect by the synergistic action of particulate reinforcement, grain's pulling out, “self‐reinforcement,” crack deflection, and grain refining. A maximum bending strength of 881 MPa and a fracture toughness of 9.24 MPam1/2 were obtained at 10 vol% SiC. The Vickers hardness of the composites increased monotonously from 9.6 to 12.5 GPa.  相似文献   

15.
《Ceramics International》2017,43(11):8202-8207
Effects of HfC addition on the microstructures and mechanical properties of TiN-based and TiB2-based ceramic tool materials have been investigated. Their pore number decreased gradually and relative densities increased progressively when the HfC content increased from 15 wt% to 25 wt%. The achieved high relative densities to some extent derived from the high sintering pressure and the metal phases. HfC grains of about 1 µm evenly dispersed in these materials. Both TiN and TiB2 grains become smaller with increasing HfC content from 15 wt% to 25 wt%, which indicated that HfC additive can inhibit TiN grain and TiB2 grain growth, leading to the formation of a fine microstructure advantageous to improve flexural strength. Especially, TiB2-HfC ceramics exhibited the typical core-rim structure that can enhance flexural strength and fracture toughness. The toughening mechanisms of TiB2-HfC ceramics mainly included the pullout of HfC grain, crack deflection, crack bridging, transgranular fracture and the core-rim structure, while the toughening mechanisms of TiN-HfC ceramics mainly included pullout of HfC grain, fine grain, crack deflection and crack bridging. Besides, HfC hardness had an important influence on the hardness of these materials. Higher HfC content increased Vickers hardness of TiN-HfC composite, but lowered Vickers hardness of TiB2-HfC composite, being HfC hardness higher than for TiN while HfC hardness is lower than for TiB2. The decrease of fracture toughness of TiN-HfC ceramic tool materials with the increase of HfC content was attributed to the formation of a weaker interface strength.  相似文献   

16.
To toughen the Al2O3 matrix ceramic materials, Al2O3/(W, Ti)C/graphene multi-phase composite ceramic materials were fabricated via hot pressing. The effects of the graphene nanoplates (GNPs) content on microstructure and mechanical properties were investigated. Results showed that the fracture toughness and flexural strength of the composite added with just 0.2?wt% GNPs were markedly improved by about 35.3% (~ 7.78?MPa?m1/2) and 49% (~ 608.54?MPa) respectively compared with the specimens without GNPs while the hardness was kept about 24.22?GPa. However, the mechanical properties degrade with the further increase of GNPs’ content owing to the increased defects caused by agglomeration of GNPs. Synergistic toughening effects of (W, Ti)C and GNPs played an essential role in improving the fracture toughness of composites. By analyzing the microstructures of fractured surface and indentation cracks, besides GNPs pull-out, crack deflection, crack bridging, crack branching and crack arrest, new toughening mechanisms such as break of GNPs and crack guiding were also identified. Furthermore, interface stress can be controlled by means of stagger distributed strong and weak bonding interfaces correlated with the distribution of GNPs.  相似文献   

17.
In this work, we systematically studied the effects of powder characteristics (B4C, TiC and Si powders) on the existential form of toughening phases (SiC and TiB2) as well as the overall microstructure and properties of B4C–TiB2–SiC composites fabricated by reactive hot pressing. The particle size of the TiC powder plays a largely determining role in the development of novel toughening phases, the TiB2–SiC composite structure, that are formed in the B4C matrix, while the Si particle size affects the agglomerate level of the SiC phase. The TiB2–SiC composite structure and SiC agglomerates enhance the fracture toughness, but decrease the flexural strength. Both the microstructure and mechanical properties of B4C–TiB2–SiC composites can be effectively tuned by regulating the combinations of the particle sizes of the starting powders. The B4C–TiB2–SiC composites demonstrate flexural strength, fracture toughness and Vickers hardness in the respective range of 567–632 MPa, 5.11–6.38 MPa m1/2, and 34.8–35.6 GPa.  相似文献   

18.
Almost fully-dense B4C–SiC–TiB2 composites with a high combination of strength and toughness were prepared through in situ reactive spark plasma sintering using B4C and TiSi2 as raw materials. The densification, microstructure, mechanical properties, reaction, and toughening mechanisms were explored. TiSi2 was confirmed as a reactive sintering additive to promote densification via transient liquid-phase sintering. Specifically, Si formed via the reaction between B4C and TiSi2 that served as a transient component contributed to densification when it melted and then reacted with C to yield more SiC. Toughening mechanisms, including crack deflection, branching and bridging, could be observed due to the residual stresses induced by the thermoelastic mismatches. Particularly, the introduced SiC–TiB2 agglomerates composed of interlocked SiC and TiB2 played a critical role in improving toughness. Accordingly, the B4C–SiC–TiB2 composite created with B4C-16 wt% TiSi2 achieved excellent mechanical performance, containing a Vickers hardness of 33.5 GPa, a flexural strength of 608.7 MPa and a fracture toughness of 6.43 MPa m1/2.  相似文献   

19.
B6.5C-TiB2-SiC-BN composite ceramics were prepared by a novel solid-state reaction using TiCN, B, and Si as raw materials. The final products obtained by hot pressing at 1950 °C possessed a fine microstructure, homogeneous distribution, and excellent mechanical properties. The obtained bulk B6.5C-TiB2-SiC-BN composite ceramic shows a high relative density (98.8 %). The mechanical properties of the composites are anisotropic because of the orientation growth and structural characteristics of TiB2 and h-BN grains. The values of hardness, bending strength, and fracture toughness measured along the hot-pressing direction were 19.6 GPa, 801 MPa, and 4.30 MPa m1/2, respectively, which were higher than those measured perpendicular to the hot-pressing direction. The formation of twin structures in B6.5C and SiC grains and the crack deflections induced by h-BN and TiB2 grains are beneficial for improving the mechanical properties of these composites.  相似文献   

20.
Ti3SiC2/3Y-TZP (3 mol% Yttria-stabilized tetragonal zirconia polycrystal) composites were fabricated by spark plasma sintering (SPS). The effect of Ti3SiC2 content on room-temperature mechanical properties and microstructures of the composites were investigated. The Vickers hardness and bending strength of the composites decreased with the increasing of Ti3SiC2 content whereas the fracture toughness increased. The maximum fracture toughness of 9.88 MPa m1/2 was achieved for the composite with 50 vol.% Ti3SiC2. The improvement of the fracture toughness is owing to the crack deflection, crack bridging, the transformation toughening effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号