首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
考察铁屑投加量、碳铁质量比、废水pH、曝气量、反应时间对品红废水脱色率、COD去除率的影响,采用芬顿法进一步处理微电解出水。结果表明,在废水pH 2.5,铁屑投加量60 g/L,碳铁质量比2∶1,曝气量600 mL/(min·L),反应时间3 h处理效果最好,脱色率和COD去除率分别达到了94.42%,66.28%;不调节微电解出水pH,投加12 mL/L FeSO_4(浓度0.1 mol/L),6 mL/L H_2O_2(质量分数30%),反应20 min,出水COD 55.49 mg/L,色度58.9倍。  相似文献   

2.
考察铁屑投加量、碳铁质量比、废水pH、曝气量、反应时间对品红废水脱色率、COD去除率的影响,采用芬顿法进一步处理微电解出水。结果表明,在废水pH 2.5,铁屑投加量60 g/L,碳铁质量比2∶1,曝气量600 mL/(min·L),反应时间3 h处理效果最好,脱色率和COD去除率分别达到了94.42%,66.28%;不调节微电解出水pH,投加12 mL/L FeSO_4(浓度0.1 mol/L),6 mL/L H_2O_2(质量分数30%),反应20 min,出水COD 55.49 mg/L,色度58.9倍。  相似文献   

3.
增强型内电解-H2O2催化氧化处理染料废水研究   总被引:1,自引:1,他引:0  
以活性艳红X-3B模拟染料废水为处理对象,研究了处理时间、pH、液固比等因素对镀铜铁屑增强型内电解和增强型内电解-H2O2催化氧化组合工艺处理效果的影响.结果表明,适宜工艺条件为:铁屑镀铜,硫酸铜的质量分数1%、镀铜时间2.5 min;增强型内电解,pH为5~6、废水体积与镀铜铁屑质量比2 mL"g-1、处理时间25 min,在此条件下,COD去除率和脱色率分别达到83%和97%;增强型内电解-H2O2催化氧化组合,废水体积与镀铜铁屑质量比2 mL·g-1、内电解处理时间为25 min、pH为4~6、H2O2加入量4 mL·L-1、氧化时间20 min,在此条件下,对活性艳红X-3B模拟染料废水脱色率和COD去除率分别达99%和90%.  相似文献   

4.
采用Fe/C微电解—Fenton氧化法处理松节油加工废水,Fe/C微电解单元主要研究了铁屑投加量、铁炭比、pH对处理效果的影响;Fenton氧化单元主要研究了H2O2投加量、超声、UV对Fenton处理效果的影响。结果表明:在铁屑投加量为100 g/L,铁炭比为1,pH为2时,COD、色度的去除率达到84.2%、96%,B/C从0.12升高到0.41;在H2O2投加量为8 mL,pH为3,超声功率为100 W的条件下,COD去除率达到98.5%,B/C从0.41提高到0.65,最终处理后废水COD≤100 mg/L,色度≤5。  相似文献   

5.
马铃薯淀粉废水的综合处理工艺研究   总被引:1,自引:0,他引:1  
实验以H2O2/Fe2+为氧化剂,与改性膨润土处理马铃薯淀粉废水,并考察了不同浓度H2O2的加入量、FeSO4加入量、pH值、反应时间及膨润土的加入量对COD去除率和脱色率的影响。结果表明,在反应条件为10%H2O2投加量10mL/L,0.1mol/L FeSO4加入量20mL/L,改性膨润土的用量40g/L,pH=4.0,反应时间1h时,COD去除率和脱色率分别达90%和98%。  相似文献   

6.
铁炭微电解-Fenton试剂预处理纤维素发酵废水   总被引:7,自引:0,他引:7  
采用铁炭微电解-Fenton试剂对高化学需氧量、高色度及高盐度的纤维素发酵废水进行了预处理研究。研究表明,铁炭微电解的最佳工艺条件为pH值为4~5,铁屑用量150 g/L,铁炭质量比为1∶2,反应时间1 h,曝气量30 mL/min;Fenton反应最佳条件为:pH值为5,H2O2投加量为4.5 mL/L,反应时间60 min,在此反应条件下,废水COD总去除率接近40%,色度去除率达81%,有效地去除了废水中影响乙醇发酵的4种抑制剂,改善了后续生化处理条件,提高了废水的可生化性。  相似文献   

7.
粉煤灰和芬顿试剂协同处理印染废水的实验研究   总被引:1,自引:0,他引:1  
采用粉煤灰和Fenton试剂联合处理印染废水,初步研究了该方法对印染废水脱色和去除COD的作用机理和影响因素。试验的最佳条件是:30%过氧化氢加入量为1mL/L,Fe2 加入量为300mg/L,粉煤灰加入量为50g/L。结果表明,该方法对印染废水脱色率达99%,COD去除率达92.9%,是一良好的印染废水预处理方法。  相似文献   

8.
采用铁炭微电解吸附-Fenton氧化、超声联合工艺处理高浓度有机实验室废水,研究了pH值、H2O2投加量、FeSO4投加量、反应时间等因素对COD去除率的影响。结果表明:铁炭微电解吸附体系在pH=5、Fe∶C体积比为1∶1、时间为3h条件下COD去除率为24%;再经Fenton氧化控制反应时间2h,在FeSO4投加量为6g/L、H2O2投加量为90mL/L、pH=3的处理条件下,废水COD总去除率达48.32%。  相似文献   

9.
铁碳微电解及H2O2在糖蜜酒精废水预处理中的应用   总被引:2,自引:0,他引:2  
采用铁碳微电解-H2O2联合和铁碳微电解/H2O2耦合2种工艺分别对糖蜜酒精废水进行处理,并考察了两种工艺运行的最佳条件.结果表明,对于COD为75 g·L-1的糖蜜酒精废水,铁碳微电解-H2O2联合工艺在铁碳体积比1∶1,铁与废水体积比1∶5,微电解反应120 min之后,投加8%H2O2,继续反应120 min,COD去除率为33.1%,加入石灰乳调pH到7.0并离心后,COD去除率达到40%;铁碳微电解/H2O2耦合工艺在铁碳体积比1∶1,铁与废水体积比1∶4,H2O2投加量8%,反应120 min后,COD去除率为38%,加入石灰乳调pH到7.0并离心后,COD去除率达到56.3%.  相似文献   

10.
铁碳微电解/H2O2混凝法处理焦化废水的试验研究   总被引:1,自引:0,他引:1  
采用一次铁碳微电解/H2O2混凝-二次铁碳微电解/H2O2混凝法处理高色度、高COD、高毒性的焦化废水.试验确定的工艺条件:(1)铁碳微电解/H2O2法去除COD的最佳条件:pH为2、H2O2投加量为4.4 mL-1、反应时间为180min,铁屑投加量为30g-L-1、m(Fe):m(C)为3:1.(2)铁碳微电解/H2O2法去除色度的最佳条件:pH为3、H202投加量为1.8mL·L-1、反应时间为120min、铁屑投加量为30g·L-1、m(Fe):m(C)为3:1.(3)混凝的最佳条件:pH为7、FeCl3的投加量为100 mg·L-1、PAM的投加量为2 mg·L-1.结果表明,在上述最佳工艺条件下对该废水进行处理,COD和色度去除率分别可达97%和99%以上,均可达到污水综合排放标准(GB 8978-1996)中的一级标准.  相似文献   

11.
王颖  郭晓滨  毕方方 《广东化工》2011,(8):110-111,107
采用活性炭协同Fenton氧化的方法深度处理兰炭废水生化出水,讨论了pH、H2O2投加量、硫酸亚铁投加量、反应时间,活性炭投加量对COD去除率的影响。结果表明:pH为4,H2O2(30%)投加量为2.4mL/L,FeSO4-7H2O投加量为200mg几,反应时间为30min,活性炭投加景为3g/L时,COD去除率最高,达到国家一级排放要求。  相似文献   

12.
选用实际印染废水为处理对象,探讨了臭氧协同内电解处理印染废水的效应,然后探讨了协同作用下铁碳比、铁碳量、进气量、溶液pH值、反应时间等因素对处理效果的影响。实验结果表明,臭氧协同内电解对印染废水的处理效果比内电解单独作用,臭氧单独作用时的效果好。实验结果显示,染料废水初始pH=3,铁碳比为1:2,铁碳量为100g,进气量为300L/h,反应时间为90min时处理效果最佳,脱色率达到98.25%以上,COD去除率达88.10%。  相似文献   

13.
Fenton试剂预处理丁硫克百威废水的实验研究   总被引:1,自引:0,他引:1  
通过单因素实验考察Fenton试剂预处理丁硫克百威生产废水,研究了反应初始pH值、七水合硫酸亚铁投加量、双氧水投加量和反应时间等因素对废水COD去除率和呋喃酚去除率的影响。结果表明:Fenton法预处理丁硫克百威废水的优化条件是pH=3.0、七水合硫酸亚铁投加量为5.6 g/L、双氧水投加量为25.0 mL/L、反应时间为120 min,在此条件下废水的COD去除率为60.6%,呋喃酚去除率为74.3%,BOD5/COD从0.07上升至0.36,改善了废水水质,保障了后续生化处理条件,为企业废水处理提供了切实可行的理论依据。  相似文献   

14.
Fe/Cu催化内电解-Fenton法联合处理三氯乙酸废水的研究   总被引:3,自引:2,他引:1  
采用Fe/Cu内电解-Fenton法联合处理三氯乙酸废水。考察了Fe与Cu质量比、pH值和H2O2投加量等因素对废水处理效果的影响。确定了联合处理法的最佳工艺条件:催化内电解过程中Fe与Cu质量比为4:1、pH值为4、搅拌时间为50min;Fenton法阶段中pH值为4、H2O2加入量为10mL/L并分批投加、搅拌时间为40min。在最佳工况条件下,联合工艺处理质量浓度为100mg/L的三氯乙酸废水脱氯率达80.1%,COD去除率达78.4%。使用联合法处理废水,能有效提高处理效果,可以处理较高浓度的三氯乙酸废水。  相似文献   

15.
田玉萍  杨意 《四川化工》2011,14(2):45-47
采用化学混凝剂处理果绿染料废水,探讨了两种混凝剂FeSO4·7H2O和Fe(NO3)3·9H2O的不同投放量和pH值对废水COD和色度的去除率的影响.研究结果表明,两种混凝剂都随着投加量的增加呈现先上升再下降的趋势,FeSO4·7H2O的最佳投放量为0.9g/L,此时,COD和色度去除率分别为77.5%和88.2%;F...  相似文献   

16.
绍兴市工业园区某污水处理厂二期工程接收的主要是印染废水,以及部分酸性化工废水。由于化工废水的pH低,成分复杂,色度高,可生化性差,对生物处理系统冲击较大,为此,开展了催化铁内电解法处理酸性化工废水,出水与印染废水混合后进行混凝的研究。结果表明,pH是影响催化铁内电解体系对化工废水pH的调节能力、Fe2+产生浓度、COD去除率以及B/C的主要因素。催化铁内电解法处理酸性化工废水2 h后反应出水的铁离子质量浓度在800~2 500 mg/L,将其与印染废水混合后进行混凝,混凝的最适反应条件为pH≥8,Fe2+质量浓度120 mg/L。其处理效果与投加亚铁盐混凝相当,既充分利用了催化铁预处理所产生的高浓度铁离子,并且提高了化工废水的B/C,减小了其所含难降解污染物对生化系统的不利影响,又减少了碱的用量,同时亦实现了化工与印染废水的综合预处理。  相似文献   

17.
混凝法处理珠海某织带厂印染废水   总被引:2,自引:2,他引:0  
实验研究了用投加化学混凝剂处理印染废水的方法,探讨了不同的混凝剂、混凝剂的投放量和废水的起始pH对COD和色度去除率的影响.研究表明,化学混凝法处理印染废水经济,操作简单,处理效果较好.同时,研究结果表明,KAl(SO4)2投加量为250 mg/L,pH为6.7时处理该废水效果较好.在最优化条件下,COD的去除率为81.6%,脱色率为86.5%.  相似文献   

18.
采用电Fenton法预处理染料废水,对影响COD及色度去除率的各种因素,包括内电解反应的初始pH值、铁的投加量、铁炭投加比,Fenton试剂氧化处理过程中初始pH值、H2O2的投加量及投加方式、反应时间等进行了研究。结果表明,内电解反应的最佳条件为:pH值为3.0,铁的投加量为25g/L,Fe/C为1:1.3;Fenton试剂氧化处理染料废水的最佳条件为:H2O2投加量为30mmol/L,pH值为内电解出水pH值(4.0左右),反应时间为50min。COD去除率可达58%,色度去除率可达95%以上,B/C的值也由原来的0.08提高到0.36左右。  相似文献   

19.
边侠玲 《应用化工》2010,39(8):1212-1214
对恶草酮生产废水处理的双氧水氧化工艺进行了研究,为解决恶草酮生产废水处理提供技术参考。结果表明,氧化前添加Ca(OH)2的效果优于NaOH,且Ca(OH)2的添加量在1%~3%(w/v)范围内,废水COD下降值基本相同,而超过3%(w/v)时,不降反增;在双氧水处理240 min之内,废水的COD呈线性递减,而后几乎不变。采用优化的工艺:添加1%的Ca(OH)2预处理后,加入5%(v/v)H2O2氧化4 h,并用适量Ca(OH)2控制pH为5,而后添加适量的活性炭;恶草酮生产废水的COD由38 000 mg/L降至18 000 mg/L左右,COD的去除率约为55%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号