首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
研究了铁-亚硫酸盐配合物体系处理实际硫酸厂高浓度含砷废水的工艺与影响条件。结果表明,铁-亚硫酸盐配合物在溶解氧参与下反应产生硫酸自由基,氧化废水中的As(III)产生As(V),然后升高pH,导致铁形成氢氧化物沉淀,从而使得砷被絮凝沉淀去除。絮凝-氧化-再絮凝的工艺优于直接氧化-絮凝工艺;在pH=3、n(Fe(III))/n(As)=1/10、n(亚硫酸钠)/n(As)=5、氧化、絮凝时间均为30 min条件下,直接氧化-絮凝工艺总砷去除率可以达到98.5%;絮凝-氧化-再絮凝的工艺As(III)去除率达到99.6%,总砷去除率达到99.9%,处理过后,砷含量由500 mg/L降为2mg/L,很容易通过进一步的吸附处理达到排放标准。  相似文献   

2.
在UV辐照射条件下,研究了钛盐混凝剂(TiCl_4)同步光催化氧化-混凝对水中As(Ⅲ)的去除效率及动力学特征。结果表明,TiCl_4对As(Ⅲ)的去除率在等电点附近(pH=5)达到最大,单一TiCl_4对As(Ⅲ)的去除率为73%;而增加UV辐照后,其去除效率增加至99%。UV/TiCl_4将As(Ⅲ)氧化为更易被絮体吸附的As(V)是去除率增加的主要原因。As(Ⅲ)的氧化吸附速率符合1级反应动力学模型,在pH=5~7内,其速率常数kO呈现出先增加后减小的变化趋势,在pH=6时达到最大(k_O=1.00 min~(-1));溶液中总砷(As(Ⅲ)+As(V))的吸附速率也符合1级动力学模型,且速率常数在pH=5~7内随pH的增加而增大,最大可达2.27 min~(-1)。  相似文献   

3.
以炼钢厂固体废弃物钢渣为材料,通过批量平衡吸附法,并结合宏观热力学和动力模型应用,分析和研究了钢渣对水溶As(III)的吸附特征。结果表明钢渣在吸附As(III)过程中,初始阶段吸附量迅速增加,随着浓度的增加,吸附逐渐趋于饱和,最后达到平衡,具有"快速吸附、缓慢平衡"的特点。钢渣吸附材料具有极高的最大吸附容量,高达3.58×104mg/kg。钢渣对As(III)的吸附均符合Langmuir和Freundlich吸附等温线,其中钢渣对As(III)的吸附特征与Freundlich等温吸附方程吻合性最好,相关系数(R2)达到0.99以上。钢渣对As(III)的吸附动力学数据均符合一级动力学方程、Elovich方程和双常数方程,拟合优度用相关系数(R2)为0.92~0.98,相比较而言,钢渣对As(III)的吸附以Elovich方程为最佳模型。  相似文献   

4.
研究利用羧甲基纤维素钠(CMC)作为稳定剂,采用均相沉淀法制备FeS纳米粒子,采用透射电子显微镜、X射线衍射仪、傅立叶变换红外光谱仪、X射线光电子能谱等方法对其进行表征,并讨论了对水中As(V)吸附性能的影响因素。结果表明,吸附量随CMC投加量增加而增加,CMC、FeS在质量比为1:1时,吸附量最大;对于50 mL初始质量浓度为10 mg/L的As(V)溶液,CMC-FeS适宜投加量为5 mg,在反应时间达到3 h即达到平衡,As去除率达到99%以上;pH在2~9时去除率均能达到80%以上,pH在5左右去除效果为好;吸附过程符合准2级动力学方程和Freundlich等温方程。说明稳定的纳米硫化亚铁是一种高效的除砷材料。  相似文献   

5.
三价铁离子浓度对As(V)-Fe(II)-Fe(III)体系沉淀臭葱石的影响   总被引:1,自引:0,他引:1  
在常压、95℃、初始pH=1.5的条件下,研究了As(V)–Fe(II)–Fe(III)体系中初始Fe(III)浓度对砷的去除率和臭葱石合成的影响。结果表明,溶液中初始Fe(III)/As(V)摩尔比为0时,沉淀产物为结晶度良好的臭葱石,但砷的去除率仅为24.3%,沉淀浸出砷浓度高于国标规定的浓度限值5 mg/L。溶液中初始Fe(III)/As(V)摩尔比大于0时,在升温过程中生成了无定形砷酸铁,当初始Fe(III)/As(V)摩尔比不超过1.6时,砷酸铁反应8 h后转化为臭葱石;随初始Fe(III)/As(V)摩尔比增大,砷的去除率增大,臭葱石沉淀的结晶度降低、浸出砷浓度降低;其中,初始Fe(III)/As(V)摩尔比为0.8和1.6时,臭葱石沉淀的浸出砷浓度低于5 mg/L,适合安全堆存。当初始Fe(III)/As(V)摩尔比大于1.6时,无定形砷酸铁反应8 h仍不能转化成臭葱石,砷的去除率降低,沉淀浸出砷浓度超标,不适合安全堆存。  相似文献   

6.
将建筑红砖废料作为饮用水除砷材料,经酸洗和三氯化铁改性,制备负载铁氧化物红砖颗粒(ICBP)。吸附动力学试验结果表明,ICBP对As(III)的吸附速率较快,8 h左右可达到吸附平衡;吸附等温线试验结果表明,ICBP对As(III)的饱和吸附量约为5.97 mg/g;溶液离子浓度提高可促进As(III)的去除,而碱性条件和磷酸根将对As(III)的去除造成干扰。ICBP对水中As(III)有良好的去除效果,有较好的工程应用前景。  相似文献   

7.
高铁酸钾处理含砷废水   总被引:7,自引:0,他引:7  
基于对K2FeO4氧化As(III)热力学平衡及As(III)氧化过程氧转移机理的研究,利用高铁酸钾氧化-絮凝一体化工艺处理100 mg/L模拟含砷废水,考察了Fe/As质量比、pH值、反应温度、反应时间等因素对砷去除效果的影响. 结果表明,最优工艺条件为Fe/As质量比3,pH值6,温度25℃,时间30 min,处理后出水的As浓度低于10 mg/L,达到《生活饮用水卫生标准》(GB5749-2006).  相似文献   

8.
采用水热法在ACF上负载纳米TiO2制备得TiO2/ACF光电极,利用XRD、SEM、TEM对其进行了晶体结构、表观形貌、粒径大小的分析。并将其用于光电催化氧化As(Ⅲ),探讨了外加偏压和氧气对氧化As(Ⅲ)的影响。电极暗态通电无法氧化As(Ⅲ),外加偏压对光电催化氧化As(Ⅲ)有最佳值0.5 V,在此条件下通氧气对氧化As(Ⅲ)无促进作用。在初始As(Ⅲ)为2.0 mg/L,pH=7,固液比1.0 g/L,外加偏压0.5 V条件下,紫外光照射60 min后As(Ⅲ)转化率达到86.7%。  相似文献   

9.
对煤矸石进行预处理后用于模拟砷污染水体的处理,采用批量单因素试验,考察了煤矸石对水中As(III)的去除效果,研究了H2 O2对不同浓度As(III)的氧化效率及煤矸石-H2 O2共存时对水中As(III)去除效果提高的程度及原因.结果表明:相同条件下,煤矸石粒径越小对水中As(III)的去除率越高;对于500μg·L-1的As(III)溶液,煤矸石的投加量为40 g·L-1时可达到50.50%的去除率;pH值对煤矸石去除As(III)的效果影响作用不大;高温有利于反应过程的发生;煤矸石对As(III)吸附符合颗粒内扩散模型和Langmuir吸附等温式模型,吸附速率由膜扩散和颗粒内扩散联合控制,且吸附属于均匀介质表面的单层吸附;H2O2可促使As(III)转化为As(Ⅴ),H2O2浓度越大,氧化效率越好;煤矸石和H2 O2共同作用对As(III)氧化及去除效果的提高主要是由于煤矸石矿物成分中的Fe与H2 O2之间形成的芬顿效应.  相似文献   

10.
《应用化工》2022,(12):2827-2829
生物氧化法作为预处理,联合离子交换纤维(FFA-1)技术去除水中无机砷,考察pH、再生次数对砷去除效果的影响。结果表明,FFA-1在酸性至中性条件下对五价砷(As(V))有很高的去除能力,约为90 mg/L,但是在pH为2~10时,对三价砷As(Ⅲ)去除量都很低。以生物氧化作为预处理,先氧化As(Ⅲ),再用FFA-1去除,可以完全去除水中的砷(去除率>99%)。  相似文献   

11.
彭兵兵  宦克为  肖楠  尹笑乾  杨继凯 《精细化工》2021,38(11):2299-2304,2311
以导电玻璃为基底采用水热法制备了WO3纳米片薄膜,再通过溶剂热法改变不同溶剂热反应时间(6、8和10 h)在WO3纳米片薄膜上生长Bi2WO6制备了WO3/Bi2WO6复合薄膜.利用XRD、SEM、UV-Vis、光电流、光电催化和交流阻抗对WO3/Bi2WO6复合薄膜的结构和光电性能进行表征与测定.结果表明,WO3纳米片薄膜的光电流密度为0.74 mA/cm2,对质量浓度为6.0 mg/L亚甲基蓝的光电催化效率为47.9%.不同WO3/Bi2WO6复合薄膜的光电化学性能均优于单一WO3纳米薄膜,且溶剂热反应时间为8 h的WO3/Bi2WO6复合薄膜具有最高的光电流密度(1.22 mA/cm2)和最优的光电催化效率(58.6%).WO3/Bi2WO6复合薄膜有效降低了复合薄膜内部电子阻抗,增加了有效光电化学反应位点,显著提升了光电化学性能.  相似文献   

12.
王艺蒙  刘建军  左胜利  李抗 《化工进展》2021,40(7):3747-3759
MoS2是一类典型的后石墨烯二维材料,具有优异的光电性能及良好的化学稳定性,是近年来被广泛研究的一类新型光电催化剂,有关其催化活性位点的构效关系和反应机理是目前的研究热点。本文介绍了MoS2的结构特性和活性位点分布,重点归纳分析了近年来有关MoS2活性位点的构筑方法,包括利用降低维度、晶相调控、特殊形貌设计和非晶化等方法对MoS2本体进行改造,以及采用原子掺杂、缺陷工程的方式对MoS2进行协同修饰。通过对催化性能及反应机理的研究,表明这些方法能有效提高MoS2的催化性能。最后,结合研究现状对目前存在的挑战和研究方向进行了分析总结,指出在MoS2上构造有序分布的活性位点并平衡其稳定性以及催化性能的构效关系是未来MoS2在光电催化领域中的研究重点。  相似文献   

13.
Individual variations in inorganic arsenic metabolism may influence the toxic effects. Arsenic (+3 oxidation state) methyltransferase (AS3MT) that can catalyze the transfer of a methyl group from S-adenosyl-l-methionine (AdoMet) to trivalent arsenical, may play a role in arsenic metabolism in humans. Since the genetic polymorphisms of AS3MT gene may be associated with the susceptibility to inorganic arsenic toxicity, relationships of several single nucleotide polymorphisms (SNPs) in AS3MT with inorganic arsenic metabolism have been investigated. Here, we summarize our recent findings and other previous studies on the inorganic arsenic metabolism and AS3MT genetic polymorphisms in humans. Results of genotype dependent differences in arsenic metabolism for most of SNPs in AS3MT were Inconsistent throughout the studies. Nevertheless, two SNPs, AS3MT 12390 (rs3740393) and 14458 (rs11191439) were consistently related to arsenic methylation regardless of the populations examined for the analysis. Thus, these SNPs may be useful indicators to predict the arsenic metabolism via methylation pathways.  相似文献   

14.
二氧化钛光电催化降解水中有机污染物的研究进展   总被引:3,自引:0,他引:3  
光电催化可有效阻止光生载流子的简单复合,提高催化活性,是一种很有发展前途的污水处理方法。综述了TiO2光电催化原理、光电极的制备及影响光电催化降解的因素等近年来的研究进展。  相似文献   

15.
采用溶胶凝胶法,在导电玻璃上制备了纳米ZnFe2O4和TiO2的复合薄膜,利用X射线衍射仪及扫描电镜对其进行了表征,通过复合薄膜对甲基橙的降解试验研究了其光电催化性能及催化机理。并将复合薄膜、ZnFe2O4薄膜和TiO2薄膜在不同电压下的光电催化效果进行了对比,结果表明:复合薄膜的光电催化降解效率有了明显提高,三层复合薄膜ZnFe2O4+TiO2+ZnFe2O4的光催化效果最好,在外加偏压0.2-6V范围内随电压增大不同薄膜对甲基橙的降解率均呈现波动性增长。  相似文献   

16.
介绍了实现醛/酮与胺的还原烷基化是制备高级胺反应的2种重要方法:催化加氢和硼氢化物化学还原,叙述了这2种反应体系的主要研究进展。介绍了催化加氢中常用的催化剂,指出对金属催化剂进行硫化处理是提高选择性的有效方法:介绍了硼氢化物化学还原法中常用的催化体系,讨论了醛/酮与胺还原烷基化反应中的影响因素,特别是原料的空间住阻、脱水剂、原料配比和溶剂等因素的影响,指出可以通过改变原料配比和溶剂等条件提高目标产物的选择性。  相似文献   

17.
饮用水除砷吸附剂的研究进展   总被引:1,自引:0,他引:1  
砷在水体中主要以As(Ⅲ)和As(Ⅴ)的无机酸形式存在,对人体的危害很大,吸附法是国内外研究最广泛的饮用水除砷技术之一.详细说明了饮用水除砷的吸附剂类型,指出:复合材料效率高、费用低,目前应用最为广泛;纳米材料与砷结合后性质稳定,除砷效率最高,是今后的主要发展方向;生物吸附材料以其高吸附率、低成本成为研究的热点.  相似文献   

18.
γ-戊内酯(GVL)是一种重要的生物质平台化合物, 可以用作绿色溶剂、聚合物前体、燃料和燃料添加剂等, 催化转化生物质制备GVL是资源化利用生物质和缓解资源、能源危机的重要途径之一。糠醛经麦尓外因-彭多夫-沃莱(MPV)还原一锅制备GVL具有操作简单、经济环保、安全可靠等优点, 是GVL合成研究领域极具工业化潜质的路线, 受到学术界和工业界的广泛关注。本文阐述了糠醛转化为GVL各步所需Brønsted酸(B酸)和Lewis酸(L酸)催化活性中心, 从催化剂构筑方法、载体结构等方面总结了糠醛一锅法制备GVL的高效固体催化剂。发现水热稳定且具有良好传质效果的分子筛(如beta分子筛、ZSM-5分子筛等)是该反应中常用的载体, 以及通过分子筛脱Al改性, 或引入具有L酸位的Zr、Hf化合物、具有B酸位的磷钨酸(HPW)等活性中心是构筑该反应的高效双功能催化剂的常用手段。并对催化剂失活的原因和再生方法进行了总结, 分析了溶剂、温度等催化反应条件对反应活性的影响, 同时还对设计该反应的新型高效催化提出了建议。  相似文献   

19.
《分离科学与技术》2012,47(15):2380-2390
A laboratory study was conducted to investigate the ability of ferric ion loaded red mud (FRM) for the removal of arsenic species from water. The adsorbent material was characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. For an initial arsenic concentration lower than 0.3 mg/L, the FRM with a dosage of 1 g/L was able to reduce As(III) at pH 7 below 10 µg/L, the maximum contaminant level (MCL) of arsenic in drinking water set by the World Health Organization. In the case of As(V) removal, FRM was also particularly effective in reducing the initial arsenic concentration value of 1 mg/L at pH 2, below the MCL requirement of arsenic for drinking water. According to kinetic sorption data, the initial stage of adsorptions of As(III) and As(V) onto FRM were mainly governed by the external diffusion mechanism; however, upon saturation of the external adsorbent surface, the arsenic species were eventually adsorbed by intraparticle diffusion mechanism. The present results are promising for using the very inexpensive FRM as a low-cost material that is effective in remediating drinking waters contaminated with low concentrations of arsenic species. We report here the sorption kinetics and adsorption mechanisms of As(III) and As(V) on the FRM that has not been decsribed previously.  相似文献   

20.
《云南化工》2016,(3):36-38
用硝酸和硫酸消解载金炭样品,通过加热消解除去样品中的炭基体,以硫脲-抗坏血酸为还原剂,使溶液中的As(Ⅴ)还原为As(Ⅲ),用氢化物发生-原子荧光光谱法测定载金炭中砷含量。方法检出限为0.093 mg/L。选取5个不同含量的样品进行测定,测定结果的相对标准偏差在1.59%~5.52%之间(n=7),加标回收率在96%~101%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号