首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
PP/PE共混物的拉伸力学性能   总被引:2,自引:0,他引:2  
应用Instron材料试验机,考察了室温下聚丙烯(PP)与低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE)共混物的拉伸力学性能.结果表明,PP/LDPE共混物的拉伸强度和弹性模量与组份的关系符合对数混合法则。而PP/HDPE共混物的力学性能与组份的关系则较为复杂。  相似文献   

2.
PP/HDPE/EPDM共混物的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了聚丙烯(PP)、高密度聚乙烯(HDPE)和EPDM共混制备非交联型PP/HDPE/EPDM三元共混物。结果表明,当共混比PP/HDPE/EPDM=65/20/15,活性碳酸钙为30份,HDPE品种为GF7750,采用先把HDPE和EPDM预制成混料再与PP共混的方法,可得到性能良好的PP/HDPE/EPDM共混物。  相似文献   

3.
聚丙烯/三元乙现橡胶共混体系的研究   总被引:2,自引:0,他引:2  
研究了三元乙丙橡胶(EPDM)对聚丙烯(PP)结晶行为的影响以及PP/EPDM共混物的形态与性能的关系。EPDM对PP的熔点、结晶温度无明显影响,PP/EPDM共混物的结晶度随EPDM组份含量的增加而降低,适量的EPDM可使PP的晶体尺寸减小,晶胞参数与组份比无关。当EPDM用量为30% ̄40%时,共混物的冲击强度迅速提高。  相似文献   

4.
聚丙烯/三元乙丙橡胶共混体系的研究   总被引:3,自引:0,他引:3  
研究了三元乙丙橡胶(EPDM)对聚丙烯(PP)结晶行为的影响以及PP/EPDM共混物的形态与性能的关系。EPDM对PP的熔点、结晶温度无明显影响,PP/EPDM共混物的结晶度随EPDM组份含量的增加而降低,适量的EPDM可使PP的晶体尺寸减小,晶胞参数与组份比无关。当EPDM用量为30%~40%时,共混物的冲击强度迅速提高。  相似文献   

5.
本文研究了尼龙-66(PA-66)与聚乙烯(LDPE)共混物的力学性能。结果表明,用马来酸酐接枝聚乙烯和三元乙丙橡胶(EPDM)改善了与基体PA-66的相容性。添加弹性体EPDM,使之生成(PE/EPDM)-g-MAH共聚物,可以大幅度度地提高PA-66/(PE/EPDM)-g-MAH冲击强度,同时熔体粘度随温度的变化趋于平缓,吸水率有所下降。  相似文献   

6.
将两种熔融流动指数(MFI)相差大的聚丙烯(PP)分别与一低密度聚乙烯(LDPE)进行共混,用熔体流动速率仪测定其流动特性。发现MFI值高的PP,当共混比PP/LDPE为50/50时,其熔体流动速率(MFR)为最大,本文对此作了初步的分析和讨论。  相似文献   

7.
本文研究了尼龙-66(PA-66)与聚乙烯(LDPE)共混物的力学性能。结果表明,用马来酸酐接枝聚乙烯和三元乙丙橡胶(EPDM)改善了与基体PA-66的相容性。添加弹性体EPDM,使之生成(PE/EPDM)-g-MAH共聚物,可以大幅度地提高PA-66/(PE/EPDM)-g-MAH冲击强度,同时熔体粘度随温度的变化趋于平缓,吸水率有所下降。  相似文献   

8.
国产聚丙烯的增韧改性研究   总被引:17,自引:0,他引:17  
本文采用共混的方法对PP进行增韧改性,分别用苯乙烯与丁二烯嵌段共聚物(SBS)、三元乙丙橡胶(EPDM)和乙烯与聚烯烃共聚物(POE)作为增韧剂与PP组成二元及三元共混体系,测试了各共混体系的力学性能,并确定最佳的增韧剂和具有较好的协同效应的共混体系,试验结果表明:POE为PP的最佳增韧剂,PP/EPDM/SBS三元共混体系具有较好的协同效应。  相似文献   

9.
研究了淀粉填充对HDPE、LDPE和HDPE/LDPE共混体系性能的影响。结果表明,随淀粉量的增加,共混物的力学性能有较大的下降。当加入少量增容剂后,共混物的拉伸强度得到明显提高,并可高于无淀粉填充体系的拉伸强度;淀粉填充共混物的出口膨胀效应比纯聚乙烯的明显减少。  相似文献   

10.
EPDM粘度对PP\EPDM共混物断口形态和冲击性能的影响   总被引:2,自引:0,他引:2  
用机械共混的方法制备了一系列不同EPDM粘度的PP/EPDM共混物,对其力学性能和结晶行为进行了表征,并用扫描电子显微镜(SEM)研究了共混物冲击样条的断口形态。实验结果表明,EPDM粘度对共混物的冲击强度有较大影响,随着EPDM粘度的增大,共混物的冲击强度出现极大值,而结晶行为的变化则较小,研究共混物冲击样条的断口形态发现,共混物的冲击强度随EPDM粒径的变化出现极大值。  相似文献   

11.
SIS/SBS/PP共混改性的研究   总被引:1,自引:0,他引:1  
刘伟  苗青  陈桂兰 《塑料工业》2006,34(Z1):124-126
研究了新型聚丙烯(PP)合金材料的配方、制备、工艺及性能。分别讨论了不同用量的三元乙丙橡胶 (EPDM)、苯乙烯与异戊二烯嵌段共聚物(SIS)及苯乙烯与丁二烯嵌段共聚物(SBS)与PP组成的二元和三元共混体系对材料力学性能的影响。结果表明:SIS为PP较好的增韧剂,PP/SIS/SBS三元共混体系具有较好的协同效应,在某种程度上可以代替EPDM改性PP,共混改性后拉伸强度、扯断伸长率等性能优良。  相似文献   

12.
Tensile and impact properties of the ternary system polypropylene (PP)/ethylene propylene diene elastomer (EPDM)/glass fiber (GF) and the corresponding binary systems PP/EPDM blend and PP/GF composite are studied. Results are presented and analyzed as functions of compositional variables, viz., (i) matrix PP/EPDM blending ratio at constant GF loadings and (ii) GF loading at constant matrix blending ratios for the ternary system and (iii) EPDM content for PP/EPDM binary system and (iv) GF content for the binary system PP/GF, respectively. The role of individual components EPDM and GF in these mechanical properties is discussed and their combined effects are inspected at certain composition ranges. Theoretical analysis of tensile data is presented which reveals the effect of EPDM on the reinforcing effect of GF. Unlike the conventional role of an elastomer, increase of EPDM content in the presence of GF increases the modulus of the ternary system. Impact strength of the ternary system increases with increasing GF content both in the presence and absence of EPDM, showing a distinct minimum at matrix blending ratio PP/EPDM 90/10. Scanning electron micrographs of impact-fractured surfaces are presented to illustrate the dispersion of the two phases of the polyblend matrix, fiber alignment, and the fiber interface.  相似文献   

13.
The rheological properties and crystalline structure of the polyolefin ternary blends of EPDM/polypropylene/high density polyethylene were studied. Blends were prepared in a laboratory internal mixer by two different methods. In blend–cure process, blending and curing were performed simultaneously and EPDM was cured by dicumyl peroxide (DCP) in the presence of PP/HDPE under shear. The cure–blend was to cure EPDM alone first under shear (dynamic curing) and then mix the cured EPDM with PP and HDPE. The effect of DCP concentration, intensity of the shear mixing, and the rubber/plastic composition were studied using capillary rheometer and X-ray diffractometer. The PP-rich ternary blends showed the effect of the mechanooxidative degradation of PP by shear and peroxide. The melt viscosity increased with increasing DCP concentration in blends of EPDM-rich compositions. X-ray diffraction studies revealed that the inclusion of 25 wt % of linear EPDM in the PP/HDPE mixture for the PP-rich ternary blends changed the crystal structure of polypropylene component in the ternary blends. However, the dynamic curing did not alter the crystal structure of PP or HDPE in the blends.  相似文献   

14.
肖岩  曹文  杜荣昵  傅强 《塑料工业》2004,32(12):11-13,18
研究了PP/EPDM/纳米弹性体粒子(ENP)三元共混体系的脆韧转变行为。结果表明,与PP/EPDM二元共混物相比,三元共混物的脆韧转变可以在EPDM质量分数较低的情况下发生;在橡胶总质量分数相同的情况下,三元共混物有更高的冲击强度,拉伸强度有一定提高。从脆断样条的扫描电镜照片观察到,在相同EPDM质量分数下,PP/EPDM/ENP三元共混物中的EPDM粒子明显细化,分布均一,粒子间距减小,这是脆韧转变提前的原因。  相似文献   

15.
The control of miscibility for isotactic polypropylene (PP) and ethylene-propylene-diene terpolymer (EPDM) has been attempted by adding poly(ethylene-comethacrylic acid) (EMA) ionomers and by applying dynamic vulcanization. The rheological properties, crystallization behavior, and morphology of the dynamically vulcanized EPDM/PP/ionomer ternary blends were investigated with a Rheometrics dynamic spectrometer (RDS), a differential scanning calorimeter (DSC), and a scanning electron microscope (SEM). Two kinds of EMA ionomers neutralized with different metal ions (Na+ and ZN++) were investigated. Blends were prepared on a laboratory internal mixer at 190°C. Blending and curing were performed simultaneously, i.e., EPDM was vulcanized with dicumyl peroxide (DCP) in the presence of PP/ionomer. The composition of PP and EPDM was fixed at 50/50 by wt% and the contents of EMA ionomer were vaired from 5 to 20 parts based on the total amount of PP and EPDM. It was found that the addition of ionomers and the application of the dynamic vulcanization were effective in enhancing the miscibility of PP and EPDM. The structure of the blends was controlled by the following three component phases, i.e., the phase of the dynamially valcanized EPDM, PP, and Zn-neutralized ionomer. The ternary blends showed more miscibility than the PP/EPDM binary blend. This is due to the thermoplastic interpenetrating polymer network (IPN) of the ternary blends. The structure and properties of the ternary blends differed, depending on the types and contents of ionomer, i.e., the ternary blend containing Na-neutralized ionomer did not show a thermoplastic IPN structure clearly, even though the blend was prepared by dynamic vulcanization. The ternary blend containing Zn-neutralized ionomer clearly showed the behavior of a thermoplastic IPN when the contents of ionomer and DCP were 15 parts and 1.0 part, respectively.  相似文献   

16.
The article deals with method of preparation, rheological properties, phase structure, and morphology of binary blend of poly(ethylene terephthalate) (PET)/poly(butylene terephthalate) (PBT) and ternary blends of polypropylene (PP)/(PET/PBT). The ternary blend of PET/PBT (PES) containing 30 wt % of PP is used as a final polymer additive (FPA) for blending with PP and subsequent spinning. In addition commercial montane (polyester) wax Licowax E (LiE) was used as a compatibilizer for spinning process enhancement. The PP/PES blend fibers containing 8 wt % of polyester as dispersed phase were prepared in a two‐step procedure: preparation of FPA using laboratory twin‐screw extruder and spinning of the PP/PES blend fibers after blending PP and FPA, using a laboratory spinning equipment. DSC analysis was used for investigation of the phase structure of the PES components and selected blends. Finally, the mechanical properties of the blend fibers were analyzed. It has been found that viscosity of the PET/PBT blends is strongly influenced by the presence of the major component. In addition, the major component suppresses crystallinity of the minor component phase up to a concentration of 30 wt %. PBT as major component in dispersed PES phase increases viscosity of the PET/PBT blend melts and increases the tensile strength of the PP/PES blend fibers. The impact of the compatibilizer on the uniformity of phase dispersion of PP/PES blend fibers was demonstrated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4222–4227, 2006  相似文献   

17.
Studies are reported on tensile and impact properties of several binary and ternary blends of polypropylene (PP), styrene-b-ethylene-co-butylene-b-styrene triblock copolymer (SEBS), high-density polyethylene (HDPE), and polystyrene (PS). The blend compositions of the binary blends PP/X were 10 wt % X and 90 wt % PP, while those of the ternary blends PP/X/Y were 10 wt % of X and 90 wt % of PP/Y, or 10 wt % Y and 90 wt % PP/X (PP/Y and PP/X were of identical composition 90:10); X, Y being SEBS, HDPE, or PS. The results are interpreted for the effect of each individual component by comparing the binary blends with the reference system PP, and the ternary blends with the respective binary blends as the reference systems. The ternary blend PP/SEBS/HDPE showed properties distinctly superior to those of PP/SEBS/PS or the binary blends PP/SEBS and PP/HDPE. Differences in the tensile yield behavior of the different samples and their correlation with impact strength suggested shear yielding as the possible mechanism of enhancement of impact strength. Scanning electron microscopic study of the impact fractured surfaces also supports the shear yielding mechanism of impact toughening of these blends.  相似文献   

18.
Polypropylene (PP)/nylon 11/maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MAH) ternary polymer blends were prepared via melt blending in a corotating twin‐screw extruder. The effect of nylon 11 and EPDM‐g‐MAH on the phase morphology and mechanical properties was investigated. Scanning electron microscopy observation revealed that there was apparent phase separation for PP/EPDM‐g‐MAH binary blends at the level of 10 wt % maleated elastomer. For the PP/nylon 11/EPDM‐g‐MAH ternary blends, the dispersed phase morphology of the maleated elastomer was hardly affected by the addition of nylon 11, whereas the reduced dispersed phase domains of nylon 11 were observed with the increasing maleated elastomer loading. Furthermore, a core‐shell structure, in which nylon 11 as a rigid core was surrounded by a soft EPDM‐g‐MAH shell, was formed in the case of 10 wt % nylon 11 and higher EPDM‐g‐MAH concentration. In general, the results of mechanical property measurement showed that the ternary blends exhibited inferior tensile strength in comparison with the PP matrix, but superior toughness. Especially low‐temperature impact strength was obtained. The toughening mechanism was discussed with reference to the phase morphology. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
The rheological and tensile properties and the morphology of polypropylene (PP)/ethylenepropylene-diene terpolymer(EPDM)/ionomer ternary blends were investigated, using a rheometric dynamic spectrometer (RDS), a dynamic mechanical thermal analyzer (DMTA), a tensile tester, and a scanning electron microscope (SEM). Two kinds of poly(ethylene-co-methacrylic acid) (EMA) ionomers, neutralized with different metal ions (Na+ and Zn++), were used. Blends were melt-mixed, using a laboratory internal mixer at 190°C. The composition of PP and EPDM was fixed at 50/50 by wt % and the EMA ionomer contents were varied from 5 to 20 wt %, based on the total amount of PP and EPDM. It was found that the ternary blends, containing Na-neutralized ionomer, showed considerably different rheological properties and morphology as compared to the PP/EPDM binary blends, due to the compatibilizing effect of the ionomer for PP and EPDM, while the ternary blends, containing the Zn-neutralized ionomer, did not. The compatibilizing effect was most prominent at 5 wt % ionomer concentration. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
氟橡胶/EPDM动态硫化共混物的研究   总被引:6,自引:2,他引:4       下载免费PDF全文
周童杰  张祥福  张勇 《橡胶工业》1999,46(8):451-455
研究了动态硫化工艺条件和共混比对氟橡胶(FKM)/EPDM共混物拉伸性能拉、热油老化性能和应力松弛性能的影响。结果表明:与直接静态硫化相比,动态硫化可避免两种硫化体系的相互影响;静态硫化共混物拉伸强度只有2MPa,而动态硫化共混物可达10MPa以上;工艺条件对动态硫化共混物性能的影响不大;随共混物中EPDM用量的增大,共混物的热空气老化和热油老化性能均有所下降  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号