首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
引言近年来随着全球变暖和气候变化,温室气体CO2的排放和控制日益受到人们的关注,CO2的捕集和封存(carbon capture and storage,CCS)技术是减排CO2的一种有效手段,其中CO2的捕集成本约占CCS总成本的75%[1-2]。来自化石燃料燃烧发电排放的CO2约占世界CO2总排放量的  相似文献   

2.
碳捕集和碳封存(CCS)可看作是一种能显著减少CO2排放的新技术,但一直以来,水泥工业对CCS技术的经济可行性普遍持怀疑态度。而法国图卢兹国立综合理工学院和拉法基公司合作研发的一种碳捕集新技术,不仅能与水泥厂融为一体,还能实现水泥厂电力的自给,从而明显降低碳捕集成本。  相似文献   

3.
《煤化工》2016,(1):11-14
煤制油气和化工产品生产过程会排放大量高浓度CO2气体,成为制约煤转化技术发展的主要瓶颈之一。CO2捕集、封存与利用被认为是煤制油气和化工产品CO2减排的有效措施。采用排放因子法,分析了煤直接液化、煤间接液化、煤制天然气和煤制烯烃等典型项目CO2排放特征,并设定碳捕集后封存至咸水层、碳捕集后用来驱油和征收碳税三种碳减排方式,对比了三种方式下CO2的减排成本。结果表明:吨CO2排放征收碳税大于300元时,煤化工低温甲醇洗单元产生的CO2封存至咸水层技术具有竞争力;吨CO2排放征收碳税大于50元时,选择捕集后驱油会节约成本。  相似文献   

4.
如何在当前的能源形势下,合理地协调产业发展与CO2排放控制之间的矛盾已经成为目前我国煤化工产业急需解决的重要问题。本文对我国煤化工产业的CO2排放现状以及所面临的问题进行了深入分析,对现有的碳捕集封存系统(CCS)的技术发展现状进行了归纳与总结,并指出目前在我国煤化工行业实施应用碳捕集封存系统(CCS)在技术、成本、安全与环境影响、法律与法规等方面所面临的障碍。  相似文献   

5.
通过介绍全球及中国近年来CO2的排放状况以及小规模回收技术的缺陷,首先指出了CO2规模化回收的迫切性及资源化利用的优势,并以CCS(碳捕集与封存)和CCU(碳捕集与利用)为例,分别介绍了诸如地质封存、海洋封存、化学转化和生物转化等规模化回收利用技术,阐述了这些技术的回收原理、工艺路线、安全环保性、技术优势和工业化案例;通过分析CCS各技术的封存能力、封存效果、技术瓶颈及工业化推广的进度和潜力,指出CCS技术的全球化应用目前还存在一定的风险和制约;通过对比CCU各技术研究重点、转化瓶颈以及工业化进度等,指出化学转化法是目前最有效的CO2规模化回收利用技术。最后还介绍了其他几种具有规模化潜力的CO2利用新技术。  相似文献   

6.
气候变暖成为国际社会关注的热点问题,其中温室气体CO2成为人们关注的焦点。近年来兴起的碳捕集封存技术(carbon capture and storage,CCS)已被广泛地认为是一种潜在的、可供选择的CO2减排方案。本文介绍了该技术的提出及现状、CCS技术原理、重点介绍了它的分类方法及其优缺点,并讨论了在我国的应用现状及意义。  相似文献   

7.
烟气中二氧化碳捕集技术研究进展   总被引:1,自引:0,他引:1  
二氧化碳是一种主要的温室气体,而化石燃料燃烧产生和排放出大量的CO2气体是造成全球气候变暖的最主要原因,CO2减排控制技术在碳资源循环利用和环境保护方面均具有重要的意义,CO2的排放控制以及封存利用已经成为一个举世关注的重大科学研究课题.本文综述了近年来CO2捕集技术的研究进展.  相似文献   

8.
铵基循环碳酸化固定CO2   总被引:1,自引:0,他引:1       下载免费PDF全文
引言由煤等化石燃料燃烧产生的温室气体CO2的捕集与封存已引起国际社会的广泛关注[1-2];其中,模仿自然界钙镁硅酸盐矿物风化过程的碳酸化固定是实现大规模封存CO2的重要途径,与其他封存技术相比,碳酸化固定CO2环境风险性小,并可  相似文献   

9.
<正>近日,由国家能源集团鄂尔多斯煤制油分公司承担实施的我国首个10万t/a二氧化碳捕集和封存全流程示范项目进展顺利,近期已开始研究制定相关技术标准。为减少向大气排放温室气体,当前各国争相研究二氧化碳捕集和封存(CCS)技术。作为我国最大的能源企业之一,从2003年起,原神华集团(去年已并入国家能源集团)与中国科学院、北京师范大学、清华大学、北京大学等国内外科研机构合  相似文献   

10.
CO2是一种温室气体,通过CO2收集、驱油技术,能将造成温室效应的气体用于提高原油采收率,同时减少工业生产中温室气体的排放。为了实现CO2的捕集纯化,胜利油田采用一乙醇胺溶液(MEA)化学吸收工艺捕集CO2。介绍了"低渗透油藏CO2驱油"重大先导试验,在胜利发电厂建设CO2捕集纯化装置,通过此装置收集稳定、廉价的CO2气体用于驱油生产实践。通过分析系统运行状况,对装置进行了一系列的试验、研究,总结了大量CO2捕集系统的工程应用经验。胜利油田CO2捕集项目,通过将大型燃煤电厂烟道气中CO2捕集纯化、安全输送等系列技术攻关,形成低能耗捕集纯化、运输的集成配套技术。  相似文献   

11.
为提高动力煤利用效率,分析了中国不同牌号动力煤和各大产区动力煤的煤质特性,阐述了中国动力煤的应用现状。针对动力煤燃烧过程中CO2排放量逐年增长的现状,提出了碳捕集与封存战略,并介绍了目前中国运行中的碳捕集项目。结果表明,中国动力煤中以弱黏煤灰分最低为13.10%,发热量最高为29.59 MJ/kg;贫煤灰分、硫分最高,但水分、挥发分较低;褐煤硫分、发热量最低,水分和挥发分最高。动力煤主要用来发电,其次是锅炉燃烧。褐煤主要用作发电燃料,部分用于气化和合成气;长焰煤多为电厂、机车、窑炉燃料,也可为气化用煤;不黏煤、弱黏煤除用于发电外,还可作为动力及民用燃料。最后提出开展碳捕集与封存技术(CCS)是降低燃煤CO2排放,缓解温室效应的重要措施。  相似文献   

12.
The production of energy in Pakistan as a developing country mainly depends on consumption of fossil fuels, which are the main sources of greenhouse gas (GHG) emissions. These emissions can be mitigated by implementing carbon capture and storage (CCS) in running plants. An overview of the current and future potentials of Pakistan for CCS is provided, indicating a great potential for this technology to capture CO2 emissions. The amine CO2 capture process as the most mature procedure is currently applied in many oil and gas companies in Pakistan, which can be employed to capture CO2 from other industries as well. Pakistan has a great CO2 storage potential in oil, gas, and coal fields and in saline aquifer as well as significant resources of Mg and Ca silicates suitable as feedstock in the carbon mineralization process. For further development and implementation of CCS technologies in Pakistan, economic and policy barriers as the main obstacles should be alleviated.  相似文献   

13.
为强化石油回采捕集CO2的全周期评估   总被引:1,自引:0,他引:1  
The development and deployment of Carbon dioxide Capture and Storage (CCS) technology is a cornerstone of the Norwegian government's climate strategy. A number of projects are currently evaluated/planned along the Norwegian West Coast, one at Tjeldbergodden. COe from this project will be utilized in part for enhanced oil recovery in the Halten oil field, in the Norwegian Sea. We study a potential design of such a system. A combined cycle power plant with a gross power output of 832 MW is combined with CO2 capture plant based on a post-combustion capture using amines as a solvent. The captured CO2 is used for enhanced oil recovery (EOR). We employ a hybrid life-cycle assessment (LCA) method to assess the environmental impacts of the system. The study focuses on the modifications and operations of the platform during EOR. We allocate the impacts connected to the capture of CO2 to electricity production, and the impacts connected to the transport and storage of CO2 to the oil produced. Our study shows a substantial reduction of the greenhouse gas emissions from power production by 80% to 75 g·(kW·h)^-1. It also indicates a reduction of the emissions associated with oil production per unit oil produced, mostly due to the increased oil production. Reductions are especially significant if the additional power demand due to EOR leads to power supply from the land.  相似文献   

14.
针对大型煤炭间接液化项目中CO2纯度高、排放集中的特点,通过技术选择、工艺优化和对工艺过程中产生的余热和高热值尾气进行充分利用,可大幅减少CO2排放。通过对CO2排放源进行识别,有针对性地确定其合理的利用方式;通过建立煤炭间接液化工厂排放CO2用于驱油的经济评价模型,对其应用经济可行性进行了论证。  相似文献   

15.
碳捕集与封存技术(即CCS技术)通过对CO2进行捕集、压缩、运输与封存,可实现CO2大规模减排,近年来受到广泛关注。CCS技术的经济成本是其商业化的关键因素,但目前多数研究都集中在捕集过程,CCS全过程的经济成本分析鲜见报道。针对CO2捕集与咸水层封存系统,给出了捕集封存全过程投资运行总成本和捕集封存整体系统CO2减排成本的计算公式,建立了CO2捕集、压缩、管道运输与咸水层封存全过程的成本估算模型,并对典型的600 MW超临界燃煤电厂捕集封存CO2的投资运行成本和减排成本进行了案例研究。  相似文献   

16.
Carbon capture and storage (CCS) is one of the interim technologies to mitigate greenhouse gas emissions from stationary sources such as power plant and large industrial facilities. CCS allows for continued utilization of fossil fuels (e.g. coal, natural gas and oil), which are still relatively inexpensive and reliable in comparison to inherently low-carbon renewable resources (e.g. wind, solar etc.). On the other hand, retrofitting power plants for carbon capture (CC) entails major capital costs as well as reduction of thermal efficiency and power output. This paper presents integer programming optimization models for planning the retrofit of power plants at the regional, sectoral or national level. In addition to the base case (i.e., non-fuzzy or crisp) formulation, two fuzzy extensions are given to account for the inherent conflict between environmental and economic goals, as well as parametric uncertainties pertaining to the emerging CC technologies. Case studies are shown to illustrate the modeling approach.  相似文献   

17.
韩红梅 《煤化工》2020,48(1):1-4,14
分析了我国煤化工主要生产路线的碳流向和碳利用情况,计算了煤化工生产过程的碳排放。通过分析计算可知,原煤中碳的1/5~1/3进入产品;按转化单位煤炭计,煤化工碳排放强度2.1 t/tce^2.5 t/tce,比燃煤发电低19%~32%;按生产单位热值能源产品计,煤制油气路线碳排放强度比燃煤发电有所降低;煤制燃料和肥料在使用时将碳释放,不再具有留碳功能;煤制化学品的碳可以多次利用,具有更强的留碳能力。以煤制化学品计,2018年我国煤化工行业节碳能力约1.15亿t,实际节碳量约9700万t。  相似文献   

18.
二氧化碳捕集技术及应用分析   总被引:1,自引:0,他引:1  
分析了CO2捕集技术及现状。CO2捕集是CCS的关键技术单元之一,针对不同的CO2气源,国内外研究开发了多种技术。许多CO2捕集技术已经工业化,其中燃烧后烟气中CO2的捕集技术主要是以一乙醇胺(MEA)为基础的胺法;燃烧前的CO2捕集技术主要应用于IGCC电厂,一般需要对煤气中CO进行部分变换,变换后脱碳可采用成熟技术,如Selexol(NHD)等。富氧燃烧则是在中试成功的基础上,进行更大规模的工业示范。国内外大型煤制油化工项目主要采用低温甲醇洗脱除CO2,如果设置CO2产品塔,则可以获得体积分数98%以上的CO2。天然气脱碳主要采用MDEA技术。另外还有低温法、PSA、膜分离等CO2捕集技术及化学链燃烧等一些正在研发的技术。  相似文献   

19.
杨学萍 《化工进展》2022,41(7):3402-3412
从源头减碳、过程控碳、末端碳捕集封存和碳资源高附加值利用四个方面,分析了现代煤化工产业低碳发展的技术路径、对降低碳排放的效果以及未来应用前景。文中指出:源头减碳技术路径包括原料结构调整和能源结构调整,引入富氢和绿氢资源与煤炭进行碳氢互补,提高煤炭利用效率,并通过气代煤、电代煤,尤其利用弃风、弃电,可显著降低碳排放和工艺生产成本;过程控碳技术路径包括节能提效和开发革新技术,依靠现代煤化工技术进步,突破传统工艺瓶颈,是当前企业易于实施、应用较多的节能减排方式;末端碳捕集封存技术路径包括地质深层掩埋、驱油、强化深部咸水开采等,将工艺过程产生的高浓度CO2通过低成本捕集,有效提高油气采收率,并为水资源匮乏地区提供额外供水;碳资源高附加值利用技术路径主要包括CO2化学转化制高附加值及大宗化学品,国内正加快CO2制低碳烯烃、芳烃、甲醇、碳酸酯的技术研发与示范应用,努力将CO2从化石能源利用的终结排放者转化为碳循环利用的参与者,发展碳循环经济,减少碳排放。最后提出:未来将现代煤化工融入能源系统的大格局统筹考虑,推动其与新能源的优势“合并”,突破碳减排关键核心技术,是碳中和背景下现代煤化工低碳清洁发展的必由之路。  相似文献   

20.
This article presents a fleet‐wide model for energy planning that can be used to determine the optimal structure necessary to meet a given CO2 reduction target while maintaining or enhancing power to the grid. The model incorporates power generation as well as CO2 emissions from a fleet of generating stations (hydroelectric, fossil fuel, nuclear, and wind). The model is formulated as a mixed integer program and is used to optimize an existing fleet as well as recommend new additional generating stations, carbon capture and storage, and retrofit actions to meet a CO2 reduction target and electricity demand at a minimum overall cost. The model was applied to the energy supply system operated by Ontario power generation (OPG) for the province of Ontario, Canada. In 2002, OPG operated 79 electricity generating stations; 5 are fueled with coal (with a total of 23 boilers), 1 by natural gas (4 boilers), 3 nuclear, 69 hydroelectric and 1 wind turbine generating a total of 115.8 TWh. No CO2 capture process existed at any OPG power plant; about 36.7 million tonnes of CO2 was emitted in 2002, mainly from fossil fuel power plants. Four electricity demand scenarios were considered over a span of 10 years and for each case the size of new power generation capacity with and without capture was obtained. Six supplemental electricity generating technologies have been allowed for: subcritical pulverized coal‐fired (PC), PC with carbon capture (PC+CCS), integrated gasification combined cycle (IGCC), IGCC with carbon capture (IGCC+CCS), natural gas combined cycle (NGCC), and NGCC with carbon capture (NGCC+CCS). The optimization results showed that fuel balancing alone can contribute to the reduction of CO2 emissions by only 3% and a slight, 1.6%, reduction in the cost of electricity compared to a calculated base case. It was found that a 20% CO2 reduction at current electricity demand could be achieved by implementing fuel balancing and switching 8 out of 23 coal‐fired boilers to natural gas. However, as demand increases, more coal‐fired boilers needed to be switched to natural gas as well as the building of new NGCC and NGCC+CCS for replacing the aging coal‐fired power plants. To achieve a 40% CO2 reduction at 1.0% demand growth rate, four new plants (2 NGCC, 2 NGCC+CCS) as well as carbon capture processes needed to be built. If greater than 60% CO2 reductions are required, NGCC, NGCC+CCS, and IGCC+CCS power plants needed to be put online in addition to carbon capture processes on coal‐fired power plants. The volatility of natural gas prices was found to have a significant impact on the optimal CO2 mitigation strategy and on the cost of electricity generation. Increasing the natural gas prices resulted in early aggressive CO2 mitigation strategies especially at higher growth rate demands. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号