首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究自制的焦磷酸哌嗪类阻燃剂(FR-1420)对聚乳酸(PLA)的阻燃效果及阻燃机理,添加不同含量的FR-1420阻燃PLA,采用垂直燃烧、极限氧指数(LOI)、热重(TG)分析、锥形量热(CCT)、扫描电子显微镜(SEM)等测试手段对复合材料的性能进行了系统分析。结果表明,FR-1420质量分数为15%时,可使PLA的LOI提高至31%,垂直燃烧测试后样条表面形成致密的膨胀炭层,阻燃等级达到V–0级;TG结果表明,无卤阻燃PLA与纯PLA的热分解过程相似,但残炭率大幅度提高;CCT结果表明,FR-1420可以有效地降低PLA的火灾危险性,当FR-1420质量分数达到15%时,热释放速率峰值和总热释放速率分别降低至123 kW/m2和22 MJ/m2,降低幅度分别为54%和50%,同时减缓了质量损失;残炭的SEM分析发现,FR-1420通过催化PLA形成封闭蜂窝状连续膨胀炭层,抑制可燃气体的挥发、隔绝氧气与热量的传递,从而达到优异的阻燃效果。  相似文献   

2.
利用木质素磺酸钠(SLS)替代部分聚醚多元醇,同时将甲基膦酸二甲酯(DMMP)作为添加型阻燃剂,采用"一步发泡法"制备出甲基膦酸二甲酯/木质素磺酸钠聚氨酯泡沫材料(DMMP/SLS/PUF),通过极限氧指数(LOI)测试对其阻燃性能进行分析,探究了SLS替代率及DMMP添加量对材料阻燃性能的影响。并利用锥形量热(CONE)仪和扫描电镜对材料的燃烧行为、残炭量和残炭形貌进行分析。测试结果表明:当SLS替代率为80%时,材料80% SLS/PUF的阻燃性能最好,LOI值达到了24.5%。在该替代率的基础上,DMMP添加量为30%时,材料30% DMMP/80% SLS/PUF的LOI值达到了27.3%。与PUF相比,SLS和DMMP加入使得30% DMMP/80% SLS/PUF的热释放速率由245.2 kW/m2(PUF)降到了166.8 kW/m2、总热释放量和总烟释放量降低到12.1 MJ/m2和3.4 m2,分别降低了0.2 MJ/m2和0.4 m2。同时阻燃剂的加入使材料的残炭量由20.3%提高到了37.3%,促进了材料的成炭,并且炭层表面连续、致密且较光滑,使得材料具有良好的阻燃性能。  相似文献   

3.
以热塑性动态硫化橡胶(TPV)为基体材料,加入非聚磷酸铵(APP)膨胀型阻燃剂FR-1420制备得到了阻燃TPV材料,考察了阻燃剂用量对材料阻燃性能的影响,通过热重分析(TG)和锥形量热分析分别研究了材料的热分解行为和燃烧行为。结果表明,FR-1420能显著提高TPV材料的垂直燃烧等级,当FR-1420用量为22份时,3.2 mm样条达到UL94 V-0级,FR-1420用量增加至35份,0.8 mm样条达到UL94 V-0级;TG分析显示,加入FR-1420后,TPV材料初始分解温度提前,残炭增加,有利于前期保护性炭层的形成;锥形量热分析显示,加入35份FR-1420后,TPV材料热释放速率峰值(PHRR)由534 kW/m~2降至124 kW/m~2,TPV材料的火灾安全性能得到显著提升。  相似文献   

4.
以聚丙烯(PP)为基体材料,加入无卤膨胀型阻燃剂FR-1420制备得到了阻燃PP材料,考察了滑石粉、玻纤的加入对材料阻燃性能的影响,通过热重分析(TG)研究了材料的热分解行为。结果表明,阻燃剂FR-1420的加入能提高PP的阻燃性能,当阻燃剂含量达到20%时,PP材料垂直燃烧等级达到V-0级;滑石粉母粒及玻纤的加入会在一定程度上破坏阻燃剂在燃烧过程中形成的膨胀性炭层,降低材料的阻燃性能,滑石粉母粒及玻纤含量为10%时,阻燃剂含量需分别增加至25%、23%,PP材料垂直燃烧等级才能达到V-0级;TG分析显示,阻燃剂的加入使材料初始分解温度提前,残炭增加,有利于材料阻燃性能的提高。  相似文献   

5.
李崇裔  唐刚 《中国塑料》2018,32(12):75-79
采用共沉淀法制备了苯基次膦酸铝(AlP)并对其进行表征。在此基础上,通过熔融共混法制备了一系列聚乳酸/苯基次膦酸铝(PLA/AlP)复合材料,采用热重分析(TG)、极限氧指数测试(LOI)、UL 94垂直燃烧测试、微型量热测试研究AlP对复合材料热稳定性、阻燃性能、燃烧性能的影响。结果表明,AlP可以有效提高PLA/AlP复合材料的阻燃性能, 当AlP含量为30 %(质量分数,下同)时,PLA/AlP30的极限氧指数达到25.6 %,并达到UL 94 为V-0级;AlP可以提高PLA/AlP复合材料初始分解温度和成炭性; PLA/AlP复合材料的热释放速率峰值和总热释放随着AlP添加量增大呈现先增高再下降的趋势。  相似文献   

6.
制备了复合阻燃软质聚氨酯泡沫(FPUF),研究了三聚氰胺聚磷酸盐(MPP)、可膨胀型石墨(EG)和离子液体(IL)对FPUF泡沫的阻燃影响。利用氧指数(LOI)确定3种复合阻燃剂的最佳配比,通过热重(TG)和锥形量热(CCT)分析了阻燃剂对FPUF的阻燃和热稳定性的影响。结果表明,当MPP、EG、IL的质量比为7.5∶7.5∶2时,制备的阻燃FPUF的LOI达到最高27.5%;TG显示了FPUF/MPP/EG/IL的残炭量高于纯FPUF和FPUF/MPP/EG;CCT表明了热释放速率峰值和总热逐渐降低,烟释放量及CO生成率减少;因离子液的添加使炭层更加致密,3种阻燃剂协效阻燃,改善了阻燃效果,降低了火灾危险性。  相似文献   

7.
利用磷钨酸(PWA)与膨胀阻燃剂(IFR)复配得到复合阻燃剂,并与聚乳酸(PLA)熔融共混制备阻燃复合材料PLA/IFR/PWA。通过氧指数测试(LOI)、垂直燃烧(UL-94)、扫描电子显微镜(SEM)、锥形量热测试(CONE)和热失重分析(TGA)对该复合材料的阻燃性能和热稳定性能进行研究。结果表明:PLA/IFR/PWA复合材料表现出优异的阻燃效果和明显的抑烟作用。当添加总质量分数为20%(IFR为18%,PWA为2%)时,复合材料的LOI达到41.7%,UL-94等级为V-0等级,高温残炭量显著提高,燃烧过程中烟释放量明显降低。  相似文献   

8.
以来自自然界储量第二的木质素作为膨胀型阻燃剂的基体,通过接枝氮、磷元素成功合成碳源、酸源、气源三位一体的木质素基膨胀型阻燃剂(Lig-T),实现了良好的阻燃性能。将Lig?T按照不同含量添加到环氧树脂(EP)中制备EP/Lig-T复合材料,以锥形量热测试考察复合材料的热稳定性能和阻燃性能,并重点考察复合材料在接近真实火灾事故时的热释放和烟释放规律。结果表明,当Lig-T含量为20 %(质量分数,下同)时,复合材料的热释放速率峰值为1 374 kW/m2、热释放总量为41.63 MJ/m2、烟释放总量为1 634 m2/m2,与EP参比试样的数值相比,均呈现下降的趋势,燃烧结束的残炭率从4.26 %增至10.01 %。基于气相和凝聚相的协效阻燃机理,木质素作为膨胀型阻燃剂的碳源使得复合材料在高温条件下具备更好的成炭效果,在燃烧过程中形成稳定且致密的炭层结构,在实现高效阻燃的同时减少有毒烟气的释放,降低火灾的危害。  相似文献   

9.
采用固体超强酸(SSA)与膨胀阻燃剂复配对聚乳酸(PLA)进行阻燃处理,利用极限氧指数仪、垂直燃烧测定仪以及微型锥形量热仪研究SSA对PLA阻燃性能的影响,使用凝胶渗透色谱对阻燃PLA的分子量进行测试,通过热重分析仪研究阻燃PLA材料的热稳定性及残炭量,并利用扫描电子显微镜对其炭层形貌进行观察。分析结果表明,少量SSA的添加可以显著提高阻燃PLA材料的垂直燃烧级别,热稳定性和残炭量,可以降低材料的最大热释放速率。  相似文献   

10.
采用简单方法制备了苯基次膦酸镧(LaP),并将其作为阻燃剂引入聚乳酸(PLA)中,制备了一系列PLA/LaP复合材料。采用热重分析(TG)、极限氧指数(LOI)、UL 94垂直燃烧、微型量热测试(MCC)等方法研究PLA/LaP复合材料的热稳定性、阻燃性能和燃烧性能。结果表明,LaP可以提高复合材料阻燃性能,30 %(质量分数,下同)的LaP使得复合材料的极限氧指数达到24.8 %,并通过UL 94 V-2级别;LaP可明显提高复合材料的热分解温度和成炭率;高添加量LaP可显著降低复合材料的热释放速率峰值(pHRR)和总热释放(THR),有效降低了复合材料的火灾危险性。  相似文献   

11.
通过包覆技术用生物基材料壳聚糖(CS)和植酸钠(PA-Na)依次改性聚磷酸铵(APP),获得包覆APP(MCAPP),通过红外光谱仪(FTIR)、热重分析仪(TG)和冷场发射扫描电子显微镜(SEM)等对其进行表征和分析;通过熔融共挤出,将其应用于聚乳酸(PLA)复合材料中,以改善PLA阻燃性能。结果表明,相比于纯PLA,7.5%(质量分数,下同) MCAPP(CS与APP质量比为1/2)可有效改善PLA的阻燃性能和成炭能力,热释放速率峰值(pHRR)由654 kW/m2降至469 kW/m2,残炭率由0.37%提升至6.85%。  相似文献   

12.
王娜  尤家奇  毕晴晴  姚红蕊  张静  姜岩 《精细化工》2020,37(10):2125-2131
用反相乳液法,以卡拉胶(KC)为壳材,聚磷酸铵(APP)和二氧化锰(MnO2)为芯材,制备了KC包覆APP/MnO2阻燃剂(KC-FR)。通过FTIR、 XRD、 SEM和 EDS对KC-FR进行了表征。结果表明:卡拉胶已成功包覆APP和MnO2,合成的样品具有微胶囊结构。将KC-FR应用于水性环氧树脂(EP)中,考察KC、APP、MnO2 三者质量比对EP阻燃、抑烟性能的影响。用极限氧指数(LOI)、垂直燃烧(UL-94)和锥形量热(CCT)测试了涂层的阻燃、抑烟性能。结果发现,当KC/APP/MnO2的质量比为2∶1∶1,并且在EP中添加量为20%时,制备的阻燃涂层EP2的LOI达到29.1%,UL-94达到V-0级,表现出较好的阻燃性能。EP2相比于其它涂层热释放峰值(pHRR)、热释放总量(THR)和烟释放总量(TSP)最低,相比于EP0分别下降了42%、37%和46%,表现出较好的抑烟性能。另外,热重分析(TGA)测试结果显示EP2在800℃残炭量(W800)为33%,表明KC-FR具有促进EP成炭的功能。通过SEM对残炭表面分析发现,EP2表面炭层更加致密,这表明KC-FR对促进形成稳定并且致密的炭层起到至关重要的作用。  相似文献   

13.
以热塑性弹性体树脂(PE/POE/EVA)为基料,加入自制的非聚磷酸铵(APP)磷-氮型阻燃剂——焦磷酸哌嗪系阻燃剂(FR-1420),研究了阻燃剂对材料的阻燃性能、力学性能的影响,通过热重分析(TG)研究了材料的热分解行为。结果表明,阻燃剂FR-1420含量达到25%时,材料氧指数达27.4%,垂直燃烧等级可达到V-0级;相较纯树脂,阻燃材料韧性保持较好,断裂伸长率可达到550%;TG分析表明,阻燃剂FR-1420的加入可使得材料初始热分解温度提前,残炭量增加,有利于提高材料的阻燃性能。同时比较了传统的氢氧化铝阻燃PE/POE/EVA体系,当氢氧化镁添加量达到65%时,材料垂直燃烧等级才能达到V-0级,但材料的断裂伸长率降低至132.6%,已经失去弹性体材料应有的韧性。  相似文献   

14.
宋剑峰  李曼  梁小良  粟海锋 《化工进展》2018,37(11):4412-4418
以聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)复配的膨胀型阻燃体系(IFR)为主要阻燃剂,表面改性后的赤泥(Ti-MRM)作为协效剂阻燃聚乙烯(PE),采用熔融共混法制备PE基阻燃复合材料(PE/IFR-Ti-MRM)。通过热重分析仪(TGA)、垂直燃烧仪(UL-94)、极限氧指数测定仪(LOI)及扫描电镜(SEM)等对其热氧稳定性、燃烧等级、阻燃性能和残炭形貌进行了表征与分析。结果表明:加入改性赤泥的PE/IFR-Ti-MRM复合材料形成的炭层更加致密和连续,当最优配比时,复合材料的极限氧指数达到32.2,燃烧等级达到V-0级;而PE/IFR阻燃复合材料的极限氧指数只能达到27.5,燃烧等级为V-2级。  相似文献   

15.
李旭  许苗军  李斌 《塑料》2016,(4):39-42,72
将实验室自制的三嗪大分子成炭发泡剂(CFA)、聚磷酸铵(APP)及硅树脂复配成膨胀阻燃剂(IFR)添加到聚乳酸(PLA)材料中制备阻燃PLA(IFR-PLA)材料,通过极限氧指数(LOI)和垂直燃烧(UL-94)测试研究了材料的阻燃性能。通过热重分析(TGA)测试研究了材料的热降解行为和成炭性能,通过锥形量热(CONE)测试研究了材料的燃烧行为,并对其燃烧后残炭的形貌进行研究。结果表明:当APP与CFA的质量比为5∶1,IFR的添加量为15%时,IFR-PLA材料通过UL-94 V-0级,LOI值达33.5%。IFR的加入促进了PLA材料的降解和成炭,从而提高了材料的阻燃性能。  相似文献   

16.
以季戊四醇、甲基环膦酸酐、硫酸铝为原料合成了集酸源、炭源于一体的烷基次膦酸盐成炭剂(APCP),并以三聚氰胺氰脲酸盐(MCA)为气源,热塑性聚酯弹性体(TPEE)为基体材料,制备了不同添加量的阻燃TPEE复合材料;通过极限氧指数(LOI)、垂直燃烧(UL94)和热释放速率(MCC)实验表征了复合材料的阻燃性能,热重分析和扫描电镜(SEM)研究了复合材料的热性能和残炭形貌,热重-红外联用(TG-FTIR)探究了复合材料的阻燃机理。研究表明,APCP与MCA复配能够实现膨胀阻燃,随着阻燃剂的加入,复合材料在700℃时的残炭量明显增加,SEM观察形成了多孔的膨胀炭层;当总添加量为25%,其中APCP与MCA的质量比为5.5∶1时,复合材料具有最佳的阻燃性能,LOI为27.8%,垂直燃烧通过UL94 V-0级。  相似文献   

17.
采用膨胀型阻燃剂(IFR)及协效剂海泡石(SP)对长玻璃纤维增强聚丙烯(PP/LGF)复合材料进行阻燃,通过双螺杆挤出机制备了PP/LGF母粒,IFR母粒和SP母粒,然后将这3种母粒通过注塑机制备了PP/LGF/IFR/SP复合材料,通过极限氧指数(LOI)、垂直燃烧测试、锥形量热仪、热重分析、扫描电子显微镜、力学性能测试等表征PP/LGF各阻燃复合体系的性能。结果表明,当IFR质量分数为22%时,PP/LGF/IFR阻燃复合材料的LOI为28.8%,且垂直燃烧等级达到V–0级;锥形量热仪测试结果表明加入IFR及SP后阻燃复合体系的第一热释放速率峰值降低,而第二热释放速率峰消失;SP质量分数为1%,IFR质量分数为21%的PP/LGF/IFR/SP阻燃复合材料LOI为29.6%,垂直燃烧等级达到V–0级,热释放速率峰值和总热释放量得到有效降低,热稳定性最好,且燃烧时产生致密的炭层覆盖于玻璃纤维表面,同时加入1%SP后复合材料的力学性能下降幅度相对较小。  相似文献   

18.
以间苯二胺为固化剂,聚苯氧基磷酸210氢9氧杂磷杂菲对苯二酚酯(POPP)、聚磷酸铵(APP)为阻燃剂, 复配质量分数为1 %有机蒙脱土(OMMT)为膨胀阻燃体系,对环氧树脂(EP)进行阻燃改性。通过极限氧指数测定仪、垂直燃烧测定仪同步热分析仪、锥形量热等研究改性EP的阻燃性能、热性能和力学性能。结果表明,当膨胀阻燃体系(2.5 %POPP/APP+1 %OMMT)添加量为3.5 %时,改性EP可达UL 94 V-0级,同时LOI为25.2 %;当膨胀阻燃体系添加量为11 %时,改性EP的LOI值进一步升高到31.7 %;阻燃剂的加入,使EP的初始分解温度略有降低,但残炭量明显增加;POPP/APP/OMMT的加入很大程度上降低了EP的热释放速率、烟释放量和平均热释放速率。  相似文献   

19.
采用4种经过不同表面处理剂改性的有机层状硅酸盐(Clay)与膨胀型阻燃剂复配阻燃聚乳酸(PLA)。通过熔融共混的方法制备阻燃PLA纳米复合材料,并通过极限氧指数、垂直燃烧、锥形量热测试和热失重分析对材料阻燃性能和热稳定性进行了研究,通过扫描电子显微镜对残炭形貌进行了分析。结果表明,加入经硅氧烷表面处理的Clay的PLA具有最好的热稳定性和阻燃性能;与不加Clay的阻燃PLA复合材料相比,极限氧指数从30.6 %提高至34.2 %,并且通过垂直燃烧UL 94 V-0级别,热释放速率峰值从283 kW/m2下降至199 kW/m2,下降幅度为30 %;残炭形貌分析结果显示,加入硅氧烷表面处理之后的Clay能够使残炭更加完整致密,从而提高了材料的阻燃性能。  相似文献   

20.
以三聚磷酸钠(STPP)为芯材,壳聚糖(CS)为壁材,通过离子凝胶法成功制备阻燃微胶囊CS@STPP。采用扫描电镜(SEM)、傅里叶红外光谱(FTIR)对所制备的微胶囊的表面形貌、化学结构进行表征。将CS@STPP与EG以一定比例添加到天然(NR)/杜仲(EUG)并用橡胶中,探究CS@STPP与可膨胀石墨(EG)之间的协同作用对NR/EUG并用橡胶阻燃性能影响。采用极限氧指数(LOI)、垂直燃烧测试(UL-94)、锥形量热(CCT)等测试手段对FRBR阻燃性能进行分析。结果表明FRBR的燃烧性能显著降低,LOI值达到28.4%,UL-94达到V-0等级,最大热释放速率下降30%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号