首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
以Al_2O_3-Y_2O_3和Mg O-Y_2O_3为烧结助剂,通过热压烧结分别在1600℃和1800℃下制备Si_3N_4陶瓷。结果表明:以Al_2O_3-Y_2O_3助剂时,在1800℃热压烧结制备的Si_3N_4陶瓷具有显著的双峰结构和优异的综合力学性能,其硬度、抗弯强度、断裂韧性分别为15.60±0.27 GPa、1105.99±68.39 MPa和7.13±0.37 MPa·m~(1/2);以Mg O-Y_2O_3为助剂时,在1600℃热压烧结制备的Si_3N_4陶瓷具有较高的致密度,显微结构含有长径比较高的晶须状Si_3N_4晶粒,并且具有优异的综合力学性能,其硬度、抗弯强度、断裂韧性分别为16.53±0.21 GPa、1166.90±61.73 MPa和6.74±0.17 MPa·m~(1/2)。因此,在研究烧结助剂对Si_3N_4陶瓷性能的影响时,需结合其特定合适的烧结温度,才能有望获得综合性能优异的Si_3N_4陶瓷。  相似文献   

2.
Al2O3—ZrO2—SiO2系相图结构特征的研究   总被引:2,自引:1,他引:2  
按照Al_2O_3/SiO_2比值,在Cevales给出的Al_2O_3-ZrO_2-3Al_2O_3·2SiO_2系的无变量点附近选择了6个组成,对其进行了熔体自然冷却、缓冷和淬冷析晶试验,并对析晶后的试样进行了XRD、SEM和EDAX分析,结果表明:(1)相平衡关系与Cevales给出的Al_2O_3-ZrO_2-3Al_2O_3·2SiO_2系相图的结构特征吻合得很好,其无变量点为低共熔点;(2)莫来石晶相的Al_2O_3/SiO_2比值波动于A_3S_2-A_(?-7)S之间,与Aramaki和Roy测定的Al_2O_3-SiO_2系莫来石稳态固溶体的Al_2O_3上限含量为74.3%是一致的;(3)析晶的单一莫来石晶相的EDAX能谱中不存在Zr谱线,ZrO_2在莫来石中的固溶问题,应进一步研究。  相似文献   

3.
以Al_2O_3、Zr O_2、MgO为初始粉末,采用放电等离子体烧结(SPS)制备ZTA-MgAl_2O_4复相陶瓷,研究MgAl_2O_4掺杂对ZTA-MgAl_2O_4复相陶瓷微观结构,力学及热学性能的影响。结果表明:ZTA-MgAl_2O_4复相陶瓷物相包括α-Al_2O_3、t-Zr O_2和MgAl_2O_4,烧结过程中MgO与Al_2O_3完全反应生成MgAl_2O_4;随MgAl_2O_4添加量增加,复相陶瓷Vickers硬度由21 GPa逐渐降低至17.5 GPa;而断裂韧性及抗弯强度呈现先增大后减小的趋势,当MgAl_2O_4添加量为15%(体积分数)时,断裂韧性和弯曲强度达到最大值,分别为8.55 MPa·m~(1/2)和1 056 MPa;此外,相同测试温度下复相陶瓷热导率随MgAl_2O_4添加量的增加逐渐减小,如温度为50℃时复相陶瓷热导率由18.5 W/(m·K)逐渐降低到14.3 W/(m·K)。  相似文献   

4.
ZrO2—Al2O3系陶瓷复合材料力学性质   总被引:21,自引:1,他引:21  
本文研究了ZrO_2-Al_2O_3系统陶瓷复合材料的力学性质,发现有两个最佳区域存在:在Al_2O_3基的陶瓷中,添加第二相ZrO_2颗粒可以使Al_2O_3瓷得到增韧和强化;在ZrO_2基的陶瓷中,添加少量Al_2O_3则可以通过Al_2O_3晶粒的裂纹弯曲和分叉增韧,强化ZrO_2的相变增韧,使ZrO_2瓷的强度和断裂韧性得到进一步的提高。适宜地控制YMSZ(Y_2O_3亚稳定ZrO_2)中Y_2O_3和TZP(四方相氧化锆多晶瓷)中的Al_2O_3量,可以获得高韧性和高强度的ZrO_2-Al_2O_3系陶瓷复合材料。  相似文献   

5.
通过在高纯Si_3N_4粉中直接加入SiO_2粉体,来模拟高氧含量的Si_3N_4粉体,然后引入三元助剂Al_2O_3-Y_2O_3-TiO_2,促进致密化。结果表明:当SiO_2含量为4.5%(质量分数)时,SiO_2主要参与晶界玻璃相的形成,显微结构粗化,长棒状β-Si_3N_4晶粒的平均直径为(0.99±0.15)μm,硬度、强度和断裂韧性分别为(15.1±0.3)GPa、(468.6±15.6)MPa和(11.0±0.4)MPa·m~(1/2)。当SiO_2含量为9%时,除了形成晶界玻璃相,部分SiO_2还与Si_3N_4和Al_2O_3反应形成O'-Sialon相;通过晶界钉扎效应,O'-Sialon抑制了β-Si_3N_4晶粒的长大,长棒状β-Si_3N_4晶粒的平均直径为(0.56±0.13)μm,硬度、抗弯强度和断裂韧性分别为(17.1±0.7)GPa、(435.3±65.0)MPa和(11.1±1.0)MPa·m~(1/2)。因此,与含4.5%SiO_2粉体制备的Si_3N_4陶瓷相比,含9%SiO_2粉体制备的Si_3N_4陶瓷具有更细小的晶粒和更高的硬度。  相似文献   

6.
ZrO2增韧Al2O3陶瓷耐磨性的研究   总被引:12,自引:0,他引:12  
本文对五种不同含量ZrO_2增韧Al_2O_3陶瓷在磨粒磨损条件下的耐磨性进行了试验研究。试验结果表明,ZrO_2增韧Al_2O_3陶瓷的磨损机理不同于金属,它并不是简单的显微切削机理或犁沟机理,其耐磨性与陶瓷的硬度和弹性模量没有单调的依赖关系,而与材料的断裂韧性和抗弯强度呈现比较一致的趋向关系。扫描电镜对摩擦表面和抗弯断口的对比观测表明,ZrO_2增韧Al_2O_3陶瓷磨损破坏机理属于一次性脆性断裂机理。因此,欲提高该陶瓷的耐磨性应当着重于提高陶瓷的韧性和强度。利用ZrO_2的马氏体相变,可望提高陶瓷的韧性和强度,故可望提高Al_2O_3基陶瓷的耐磨性。  相似文献   

7.
笔者以碳化硅为主要原料,以羧甲基纤维素钠(CMC)为造孔剂,分别从SiO_2-Y_2O_3-Al_2O_3和SiO_2-高岭土为助烧剂,制备多孔碳化硅陶瓷。本实验采用阿基米德法测量多孔陶瓷的气孔率,采用洛氏硬度仪测量其硬度,采用万能材料试验机测量了其抗折强度。实验结果表明:以SiO_2-Y_2O_3-Al_2O_3为助烧剂,且在SiO_2-Y_2O_3-Al_2O_3含量为20%时,所制备的碳化硅多孔陶瓷性能较以SiO_2-高岭土为助烧剂时优越。以SiO_2-Y_2O_3-Al_2O_3为助烧剂,在1 500℃可以制备出性能较好的多孔碳化硅陶瓷。当SiO_2-Y_2O_3-Al_2O_3含量为_20%时,制备的碳化硅多孔陶瓷兼具有较大的气孔率和优良的力学性能,其开口气孔率为23.73%,硬度及抗折强度分别为62MPa和15.47MPa,从断口可以看出,气孔较多且分布均匀。  相似文献   

8.
根据加压热浇注及压缩烧结工艺,研制成Si_3N_4高温陶瓷,其常温抗折强度为620MPa和1300℃下的抗折强度为450MPa。该陶瓷的特点是晶间相的结晶程度高及在相组成中存在高温石榴石3Y_2O_3·5Al_2O_3。陶瓷的微观结构主要为不规则形状晶粒,粒度不大于12μm,并含有呈六面体形的条状的Si_3N_4晶体。  相似文献   

9.
以AlN、Pr2O3做为SiC陶瓷液相烧结的复合助剂,选定不同的助剂含量(5wt%~ 20wt%)和不同的助剂摩尔比例(Pr2O3/AlN=1/3、1/1、3/1),在1800~2000℃温度下,采用热压和无压烧结的方法制备SiC陶瓷样品,并对这些陶瓷样品的性能进行了研究.实验结果表明,助剂比1/3组的样品显示出更有效地促进SiC陶瓷致密化,该组样品无压烧结最大相对密度为87%,热压烧结具有最高的相对密度96.1%、维氏硬度23.4 GPa、抗弯强度549.7MPa、断裂韧性5.36 MPa·m1/2,显微结构中可观察到晶粒拔出现象,断裂模式为沿晶断裂.  相似文献   

10.
王振  黄永前  康其锋 《玻璃》2019,46(4):15-20
用熔融法制备了R_2O-MgO-Al_2O_3-SiO_2-Fe_2O_3系花岗岩废渣微晶玻璃,研究了Al_2O_3对微晶玻璃的晶相组成、显微结构及力学性能的影响。结果表明:当Al_2O_3含量(质量分数)为6.5%、7.5%、8.5%、9.5%时,微晶玻璃试样中主晶相均为氟闪石和铁板钛矿,次晶相为镁橄榄石。Al_2O_3含量达到10.5%时析出镁钛矿相,氟闪石相减少。添加8.5%Al_2O_3微晶玻璃试样的力学性能达到最佳,其抗弯强度和显微硬度分别为136.76 MPa、7.09 GPa。  相似文献   

11.
通过放电等离子烧结(SPS)对Al_2O_3晶须增强氧化铝陶瓷致密化方法的研究,以获得细晶微观结构为目的,研究了晶须的加入对其常温力学性能的影响。从中发现添加晶须阻碍颗粒重排,显著地阻止了Al_2O_3的烧结行为。此外由于晶须网状结构较强的刚性边界,使得氧化铝基质颗粒的内应力降低。然而,在适宜的SPS环境下,当Al_2O_3晶须含量在3%~10%时能够获得几乎完全致密的细晶氧化铝陶瓷。加入3%Al_2O_3晶须的氧化铝陶瓷硬度与纯氧化铝陶瓷(约26GPa)相当,它的断裂韧性(5.6MPa·m~(1/2))高于纯氧化铝陶瓷(4.2MPa·m~(1/2))。研究结果表明,均匀分散的晶须和拔出晶须后的裂纹桥联被确认是主要的增韧机理。  相似文献   

12.
为了提高3YPSZ陶瓷的强度和韧性,先研究了Al2O3的加入量对3YPSZ陶瓷力学性能的影响,结果表明,当Al2O3含量为25wt%时,3YPSZ陶瓷综合力学性能最佳,抗弯强度为582.4MPa,维氏硬度15.4GPa,断裂韧性为6.6MPa.m1/2。再将Al2O3的含量控制在25wt%,通过改变Co(NO3)2.6H2O添加剂的含量来研究3YPSZ-25wt%Al2O3陶瓷材料力学性能的变化,研究发现,当Co3O4的引入量为0.25wt%时,3YPSZ-25wt%Al2O3陶瓷材料综合力学性能最佳,抗弯强度为623.5MPa,维氏硬度为16.9GPa,断裂韧性为7.2MPa.m1/2。并利用XRD和SEM等表征方法分析了Co(NO3)2.6H2O添加剂对材料力学性能和显微组织结构的影响。  相似文献   

13.
列出了对在Al_2O_3-ZrO_2-CeO_2(Al_2O_3 50%克分子)系中在粉料早期产物凝胶体合成的过程中,各组份的沉淀顺序对相关陶瓷材料的形态及微观组织结构的影响的研究结果。表明了陶瓷的强度和操作使用性能与微观组织结构尺寸因素之间的依存关系。查明,利用早期产物各组份同时沉淀的方法合成的粉料制造的刀具拥有更高的切削寿命。  相似文献   

14.
尤显卿  斯庭智  任萍萍  刘宁 《硅酸盐学报》2004,32(12):1542-1545
通过添加粒径为50~80nm的TiN,改善了Al_2O_3-TiC复合陶瓷的力学性能。以15%(质量分数,下同)的TiN取代15%TiC,制备了纳来TiN改性Al_2O_3-TiC复合陶瓷。结果表明:70%Al_2O_3-15%TiC-15%TiN复合陶瓷的抗弯强度和断裂韧性分别为618 MPa和7.12 MPa·m~(1/2),比70%Al_2O_3-30%TiC的性能(567 MPa和4.96 MPa·m_(1/2))明显提高,特别是断裂韧性提高了64%。纳米TiN改性Al_2O_3-TiC复合陶瓷韧性的提高主要是由于材料致密度的提高和晶粒的细化所致,它的增韧方式为微裂纹、裂纹桥接和偏转。  相似文献   

15.
Al2O3/Si3N4系纳米—亚微米复合陶瓷的制备与性能   总被引:3,自引:0,他引:3  
用平均粒径为0.5μm的α-Al_2O_3及平均粒度为0.7μm的α-Si_3N_4粉制备出具有纳米相弥散的Al_2O_3基复合陶瓷,其弥散相尺度下限为60μm左右。用XRD,SEM,STEM分析了复合陶瓷的物相与结构。性能测定结果表明:1300℃下复合陶瓷的弯曲强度是纯Al_2O_3瓷的2.5倍以上,并在1200℃仍保持460MPa的强度。  相似文献   

16.
采用熔融法制备了MgO–Al_2O_3–SiO_2(MAS)微晶玻璃,研究了SiO_2/MgO摩尔比对MAS微晶玻璃析晶和晶相转变的影响。结果表明:微晶玻璃初晶相为亚稳Mg_(0.6)Al_(1.2)Si_(1.8)O_6相,终晶相为堇青石相,随晶化温度升高,Mg_(0.6)Al_(1.2)Si_(1.8)O_6向堇青石相转变。SiO_2/MgO摩尔比对微晶玻璃析晶过程影响显著,随SiO_2/MgO摩尔比从2.5增加至3.6,晶相转变开始温度从1 000℃升高到1 150℃,晶相转变结束温度从1 050℃升高到1 180℃,Mg_(0.6)Al_(1.2)Si_(1.8)O_6相热稳定性提高,堇青石相析晶难度增大,晶相转变过程变慢。当SiO_2/MgO摩尔比为3.6时,1 080℃晶化后的微晶玻璃Vickers硬度达到最大10.4 GPa。  相似文献   

17.
以花岗岩废渣为主要原料,用熔融法制备了R_2O-CaO-SiO_2-F系微晶玻璃。采用差示扫描量热法、X射线衍射、扫描电子显微镜等测试方法研究了Al_2O_3含量对RO-CaO-SiO_2-F系微晶玻璃的析晶与性能的影响。结果表明:随着Al_2O_3含量的增加,硅碱钙石与硬硅钙石晶体细化;Al_2O_3含量(质量分数)为6.0%的基础玻璃经560℃核化2 h、910℃晶化2 h后的主晶相为硅碱钙石,其抗弯强度和断裂韧性分别为(154±20)MPa、(2.37±0.12)MPa·m~(-1/2);当Al_2O_3含量增加至6.5%时,硅碱钙石减少、氟化钙增多,力学性能降低。  相似文献   

18.
利用添加剂改善结构陶瓷材料的性能是一种较佳的方法,复合陶瓷mullite/ZrO_2/Al_2O_3具有较高的力学性能。试验证明:加入不同的添加剂对复合陶瓷有不同的影响,TiO_2会使材料的力学性能大幅度降低;Cr_2O_3会使材料的硬度显著提高。  相似文献   

19.
添加Y2O3-Al2O3烧结助剂的氮化硅陶瓷的超高压烧结   总被引:1,自引:1,他引:1  
以Y2O3-Al2O3体系为烧结助剂,在5.4~5.7 GPa,1 570~1 770K的高温高压条件下进行了氮化硅陶瓷的超高压烧结研究.用X射线衍射及扫描电镜对烧结样品进行了分析和观察,探讨了烧结温度及压力对烧结的陶瓷样品性能的影响.结果表明:得到的氮化硅由相互交错的长柱状β-Si3N4晶粒组成,微观结构均匀,α-Si3N4完全转变为β-Si3N4.经5.7GPa,1 770K且保温15min的超高压烧结,样品的相对密度达99.0%,Rockwell硬度HRA为99,Vickers硬度HV达23.3GPa.  相似文献   

20.
借助高分辨力FESEM-EDS重新研究了Al_2O_3-ZrO_2-SiO_2系相关系。研究结果认为:1)在A-Z-M分系的Zr O_2含量(w)分别为30. 00%和33. 26%,Al_2O_3、SiO_2物质的量比分别为1. 50和1. 75的2个试样中,没有发现莫来石-刚玉-ZrO_2三元共晶,只发现莫来石-ZrO_2(M+Z)二元共晶;(M+Z)共晶在形态上保持莫来石基晶的结晶习性,呈微米级共晶和纳米级共晶。2)在组成落在ZS-M连线上,Al_2O_3、SiO_2物质的量比分别为0. 26、0. 59、0. 80、1. 10的4个试样中,均没有发现锆英石晶相,均有初晶ZrO_2、莫来石和玻璃相;随着Al_2O_3、SiO_2物质的量比增大,莫来石增多、增大,并且出现少量的(M+Z)共晶,玻璃相中析出纳米级t-ZrO_2晶。3) M-ZS-S分系的SiO_2含量为90%(w)的试样在1 600℃保温3 h热处理条件下均熔,自然冷凝后呈玻璃态,并发生纳米-亚微米级t-ZrO_2析晶;没有发现所谓的锆英石-莫来石-方石英三元共晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号