首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 667 毫秒
1.
《Ceramics International》2021,47(19):27462-27468
As a common flux agent, B2O3–CuO was introduced into Li2TiO3 system to reduce the sintering temperature for the requirements of LTCC applications. The optimal mass ratio of CuO to B2O3 was innovatively explored. When the mass ratio of CuO to B2O3 increased to 1.2:1.0, excellent microwave dielectric properties were obtained in LTMF&LTZN0.892+CB1.2 ceramic of εr = 13.23, Q × f = 62,749 GHz, τf = -2.48 ppm/°C and the sintering temperature was reduced from 1300 to 930 °C. In a wide temperature range, the sample still maintain high temperature stability of |τf| < 5 ppm/°C (-40–120 °C). Based on the LTMF&LTZN0.892+CB1.2 substrate, a millimeter wave microstrip antenna resonated at 30.12 GHz was designed with a considerably high radiation efficiency of 93.94% and a signal gain of 4.87 dB. Comprehensive microwave dielectric properties make LTMF&LTZN0.892+CB1.2 become a candidate material for LTCC applications.  相似文献   

2.
Flexible high-temperature polymeric dielectrics with advanced dielectric properties are urgently demanded in various applications. In this work, series of polymer blend films were prepared from aromatic polythiourea (ArPTU) and polyimide (PI). The experimental results revealed that the blend films were properly engineered to achieve higher breakdown strength, greater dielectric constant, and larger energy density than pure PI film. For instance, the optimum property was obtained from the blend film with 10 wt% ArPTU, exhibiting prominent dielectric properties (K = 4.52, Eb = 443 MV/m), enhanced energy density (4.00 J/cm3) as well as excellent heat resistance (Tg = 419°C). In addition, stable dielectric properties at broad temperature range from −50 to 250°C were also acquired. It is deduced that the good compatibility from ArPTU and PI with similar polarity are responsible for the improved properties. The superior comprehensive properties which combine the advantages of ArPTU and PI suggest the potential applications of ArPTU/PI blend film in high-temperature dielectric areas.  相似文献   

3.
Journal of Porous Materials - To date, studies pertaining the usage&nbsp;of aliphatic dicarboxylic acids (DCAs) in&nbsp;the preparation of&nbsp;graphene-based&nbsp;hydrogels are...  相似文献   

4.
《Ceramics International》2022,48(16):22877-22884
With the rapid development of hypersonic vehicles and broadband wave-transparent radome, Si3N4 porous ceramics (Si3N4-PC) have attracted attention due to their excellent intrinsic properties of Si3N4 and high porosity. However, its high porosity results in low strength and toughness, which are fundamental properties for radome. Reaction bonded (RB) Si3N4-PC has advantages of dielectric properties and cost over general phase transformation sintering (PTS) and sintered reaction bonded (SRB) Si3N4-PC while it has been neglected in recent years. In this study, RB and SRB Si3N4-PC prepared by non-aqueous gelcasting and the influence of Si powders ingredient on their properties are discussed in order to illuminate the potential of RB Si3N4-PC in wave-transparent materials. The results show that RB Si3N4-PC with dual-granularity ingredients of 5 μm & 45 μm produces a two-tier tissue of framework of coarse whiskers enhanced by a network of tiny whiskers. SRB Si3N4-PC evolves into a two-tier tissue of framework of columnar and rod-like grains joining together to brace each other. The two-tier microscopic tissue strongly reinforces and toughens the structure and results in higher σF and γwof. As a result, the RB and SRB Si3N4-PC of dual-granularity of 5 μm & 45 μm obtain the maximum σF of 109.94 MPa and 119.56 MPa as well as maximum γwof of 990.74 J m-2 and 1167.88 J m-2, respectively. Furthermore, the ε′ and tanδ of RB and SRB Si3N4-PC of dual-granularity of 5 μm & 45 μm are about 4.20 and 4.52 as well as 7.01 × 10-3 and 22.90 × 10-3, respectively. It is concluded that RB Si3N4-PC of dual-granularity has good mechanical and dielectric properties, which are favorable for radome.  相似文献   

5.
Combustion, Explosion, and Shock Waves - Thermogravimetric analysis data were used to determine the activation energy E&nbsp;=&nbsp;205.9&nbsp;kJ/mol, the pre-exponential factor...  相似文献   

6.
《Ceramics International》2023,49(6):9338-9345
SrWO4-x wt.% LiF (SWL, x = 0.5–3.0) ceramics were obtained by a conventional solid-state reaction at 850 °C. The effects of the LiF additive on the phase evolution and dielectric response mechanism of the SWL ceramics were comprehensively studied. The densification temperature of the SWL ceramics was successfully reduced to 850 °C by adding LiF as the sintering additive. The X-ray diffraction data indicated that the SWL ceramics were composite ceramics. The lattice vibrational properties were investigated in depth by Raman scattering and Fourier transform infrared reflectance. The intrinsic dielectric property values fitted by the four-parameter semi-quantum model agreed well with the measured dielectric property values and the theoretical values obtained from the Clausius-Mossotti & damping equations. Moreover, structure-property relationships were obtained by studying the lattice vibrational modes of the SWL ceramics. The SWL ceramic achieved the optimum dielectric property at x = 2.0, with εr = 9.03 and Q × f = 47,830 GHz.  相似文献   

7.
《Ceramics International》2022,48(9):12483-12489
To investigate the influence of modification of ceramic fillers on the dielectric properties of polymer-based composites, TiO2 and core-shell structured TiO2@HfO2 nanowires were synthesized, and investigated in this study. TiO2 nanowires/polyvinylidene fluoride (PVDF) and TiO2@HfO2 nanowires/PVDF nanocomposites were prepared using the solution casting method. The experimental results showed that the TiO2@HfO2 nanowires/PVDF composites had improved dielectric properties compared with that of the TiO2 nanowires/PVDF composites. Owing to the enhanced interfacial polarisation by the multilevel interface, the composites with 10 wt % TiO2@HfO2 nanowires achieved the highest permittivity of 12.56 at 1 kHz, which was enhanced by ~72% compared to the PVDF matrix. The electric field was evenly distributed by building the fillers with a gradient dielectric constant. The characteristic breakdown strength of the composite with 5 wt % TiO2@HfO2 reached 377.76 kV/mm, compared with that of 334.37 kV/mm for the composite with 5 wt % TiO2 nanowires. This study initiated a novel strategy for preparing dielectrics with high dielectric constant and improved breakdown strength.  相似文献   

8.
Gehlenite-type Ca2Al2SiO7 ceramics were prepared by the conventional solid-state reaction. Two anomalies were found in the plot of dielectric constant vs temperature, which were associated with space charge polarization. Pure phase crystal structure and no phase transition were observed in the temperature-dependent X-ray diffraction (XRD) patterns and Raman spectra from room temperature (RT) to 900°C. There was relevant relation between Q × f and τƒ with the stretching vibrations of Ca-O bond and O-Ca-O bending in CaO8 polyhedron. Excellent microwave dielectric properties (εr = 8.86, Q × f = 22 457 GHz, and τf = −51.06 ppm/°C) were obtained for Ca2Al2SiO7 sintered at 1440°C in air, which had the potential application to use in microwave and millimeter-wave devices such as capacitors and substrates.  相似文献   

9.
Dielectric tunability has been extensively investigated in ferroelectric materials, which exhibit a negative tunability of dielectric permittivity in an external electric field. In contrast, positive tunability is rare and has been reported only in a few antiferroelectric materials. We present positive (and negative) tunability in the titanite, CaTiSiO5. The dielectric property of CaTiSiO5 was measured up to an extraordinarily high electric field of 40 MV/m. A nonlinear polarization field loop with no hysteresis was obtained. The dielectric permittivity of εr ~ 25 increases up to εr ~ 40 at 20 MV/m and room temperature. Although titanite has an antipolar structure and is expected to be “antiferroelectric,” its dielectric response in high electric fields up to ~40 MV/m differs from that of conventional antiferroelectrics. We demonstrate that the phase-transition temperature and dielectric tunability could be modulated through the chemical substitution of Ca1−xLaxTiSi1−xAlxO5, in which the destabilization of the long-range antipolar order is revealed by transmission electron microscopy analysis. These results indicate that the observed dielectric response to an electric field may originate from the unique features of the antipolar and domain structures in CaTiSiO5.  相似文献   

10.
Journal of Porous Materials - Porous anodic aluminum oxide membranes were fabricated via two-step anodization of aluminum in 0.3&nbsp;M H2C2O4, 0.3&nbsp;M H2SO4 and 0.17&nbsp;M H3PO4...  相似文献   

11.
《Ceramics International》2022,48(3):3404-3416
Employing a modified sol-gel combustion technique, BiFeO3 and Bi0.85Ba0.15Fe1-xAlxO3 (x = 0, 0.025 and 0.050) nanoparticles were synthesized, and the effects of these dopants were investigated analyzing the experimental findings and adopting the DFT + U approach. Rietveld analysis of XRD revealed a deformed perovskite rhombohedral structure for all the Ba–Al co-doped nanoparticles, which was also validated by theoretical study. Suppression of the low-frequency dispersion promoting outstanding dielectric stability was observed due to Al3+ doping, and the least dielectric constant along with the highest resistivity was reported for BBFAO-2.5. The band gap of co-doped nanoparticles (x = 2.5 & 5) decreased to 1.95 eV and 1.98 eV, respectively, compared to 2.06 eV, and 2.09 eV for BBFAO-0 and pure BFO. The average particle size of all the co-doped nanoparticles was below the repeat length of the cycloid structure, which is favorable for improved magnetic properties. Remanent magnetization, coercivity, and squareness increased as the motion of domain walls is inhibited by the smaller-sized nanoparticles. DFT + U study further endorses the findings of the experimental study. Analysis of DOS revealed the emergence of shallow impurity states around VBM due to doping, which can operate as active trap centers and impede carrier recombination. Thus, it can be inferred that, Ba–Al co-doped nanoceramics with intriguing dielectric, optical, and magnetic properties are a promising candidate for high-frequency microwave devices, magnetic memory and storage devices, near UV-detector, and solar photocatalysis applications.  相似文献   

12.
Combustion, Explosion, and Shock Waves - This paper touches upon the effect of a polyvinyl butyral content (0–2.3%) on&nbsp;the&nbsp;combustion of a Ti&nbsp;+&nbsp;C granular...  相似文献   

13.
Bhaskar  Sourabh  Kumar  Mukesh  Patnaik  Amar 《SILICON》2022,14(1):239-262
Silicon - In this investigation, hybrid AA2024 – Si3N4 (0–6&nbsp;wt.% @ 2%) – SiC (2&nbsp;wt.%) – graphite (2&nbsp;wt.%) alloy composites have been fabricated as...  相似文献   

14.
Journal of Inorganic and Organometallic Polymers and Materials - In this study, green synthesis of silver nanoparticles, an aqueous&nbsp;Syzygium malaccense&nbsp;fruit extract, was employed...  相似文献   

15.
CaTiO3 is a typical linear dielectric material with high dielectric constant, low dielectric loss, and high resistivity, which is expected as a promising candidate for the high energy storage density applications. In the previous work, an energy density of 1.5 J/cm3 was obtained in CaTiO3 ceramics, where the dielectric strength was only 435 kV/cm. In fact, the intrinsic dielectric strength of CaTiO3 is predicted as high as 4.2 MV/cm. Therefore, it should be a challenge issue to enhance the dielectric strength and energy storage density of CaTiO3 ceramics by optimizing the microstructures. In the present work, dense CaTiO3 ceramics with fine and uniform microstructures are prepared by spark plasma sintering, and the greatly enhanced dielectric strength (910 kV/cm) and energy storage density (6.9 J/cm3) are obtained. This can be ascribed to the improved resistivity and thermal conductivity, associated with the fine and uniform microstructures. The different post‐breakdown features of CaTiO3 ceramics prepared by different process well interpret why the enhanced dielectric strength is achieved in the SPS sample. The energy storage density can be further improved to 11.8 J/cm3 by introducing the amorphous alumina thin films as the charge blocking layer, where the dielectric strength is 1188 kV/cm.  相似文献   

16.
Combustion, Explosion, and Shock Waves - This paper presents the results of an experimental study of shock compression of&nbsp;titanium hydride&nbsp;(TiH2) and the deuterides of...  相似文献   

17.
(3-Aminopropyl)triethoxysilane treated La(2−x)/3Na0.06TiO3 (x = 0.06) (LNT) microparticles filled polyetheretherketone (PEEK) composites were prepared using hot pressing process. The effects of variation of LNT ceramic filling fraction on dielectric properties, water absorption, thermal stability and mechanical strength were investigated. All composites demonstrate low water absorption (less than 0.4%) when the ceramic filling fraction is lower than 0.6Vf. The obtained composites exhibited dielectric permittivities varying from ~4 to ~22 as the ceramic fillers increased from 0.1 to 0.8Vf and low losses (~10−4 @1 MHz, 3~5 × 10−3 at the frequencies of microwave (10 GHz) and millimeter wave (29-50 GHz), respectively). The mechanical strength, dimensional and dielectric thermal stability of the composite are remarkably improved by the addition of LNT ceramic fillers. A composite with near zero temperature coefficients of dielectric permittivity or resonant frequency and flexural strength of ~140 MPa could be obtained. The out-of-plane coefficient of thermal expansion (CTE) could be reduced to ~20 ppm/°C as the ceramic filler loading reached 0.7Vf.  相似文献   

18.
《Ceramics International》2016,42(15):16897-16905
Heterogeneous ceramics made of cordierite (55–56 wt%), mullite (22–33 wt%) and alumina (23–11 wt%) were prepared by sintering non-standard raw materials containing corundum, talc, α-quartz, K-feldspar, kaolinite and mullite with small amounts of calcite, cristobalite and glass phases. The green specimens prepared by PVA assisted dry-pressing were sintered within the temperature range of 950–1500 °C for different dwelling times (2–8 h). The effects of sintering schedule on crystalline phase assemblage and thermomechanical properties were investigated. The sintered ceramics exhibited low coefficients of thermal expansion (CTE) (3.2–4.2×10−6 °C−1), high flexural strength (90−120 MPa and high Young modulus (100 GPa). The specimens sintered at 1250 °C exhibited the best thermal shock resistance (∆T~350 °C). The thermal expansion coefficients and thermal shock resistance were studied using Schapery model, the modelling results implying the occurrence of non-negligible mechanical interactions between the phases in bulk. The dielectric properties characterized from room to high temperature (RT– HT, up to 600 °C) revealed: (i) noticeable effects of sintering schedule on dielectric constant (5–10) and dielectric loss factor (~0.02–0.04); (ii) stable dielectric properties until the failure of the electrode material. The thermomechanical properties coupled with desirable dielectric properties make the materials suitable for high density integrated circuitry or high temperature low-dielectric materials engineering.  相似文献   

19.
《Ceramics International》2022,48(12):17289-17297
In this study, BaSi2O5 ceramics with an orthorhombic structure were synthesized by using a traditional solid-state method at a low temperature by doping with Li2O–B2O3–CaO–CuO (LBCC) glass. The phase composition, mechanism of low-temperature sintering, microwave dielectric properties, and changes in the mesophase during the heating of low-temperature sintered BaSi2O5 ceramics were examined by performing an X-ray diffraction analysis. A compact matrix of BaSi2O5 can be wetted by the liquid phase of the formed LBCC glass. Therefore, LBCC glass with different doping percentages can effectively reduce the sintering temperature of BaSi2O5. The microwave dielectric properties of BaSi2O5 ceramics sintered at 900 °C at 4 wt% of LBCC glass were determined: εr = 7.32, Q × f = 19,002 GHz, and τf = ?35.8 ppm/°C. The chemical compatibility of the samples with Ag was studied at 4 wt% doping with LBCC glass, and the samples were fired for 4 h at 900 °C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号