首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
将含固体质量分数为5%的海藻酸钠纺丝原液与纳米二氧化钛(TiO2)水分散液均匀混合,制得海藻酸钠/纳米TiO2混合纺丝原液,采用湿法纺丝,通过氯化钙凝固浴,经拉伸、水洗,制备了海藻酸钙/纳米TiO2共混纤维,研究了纳米TiO2含量对共混纤维结构及性能的影响。结果表明:纳米TiO2的加入,提高了共混纤维的力学性能;加入质量分数为0.5%的纳米TiO2,海藻酸钙大分子链上的红外特征吸收峰峰形明显变宽,共混纤维的力学性能最佳,断裂强度为2.93 cN/dtex,断裂伸长率为7.34%,优于海藻酸钙纤维;添加纳米TiO2质量分数为3%时,纳米TiO2在共混纤维中仍能较好的分散,且纤维表面光滑。加入纳米TiO2后,共混纤维的热稳定性提高。  相似文献   

2.
刘颖 《化学与粘合》2022,44(2):137-141+154
针对传统光致变色纤维膜受酸碱等外界影响易导致变色效率低,以及稳定性不高的问题,提出在传统静电纺丝制备PVA/PEI纳米纤维膜的基础上,负载光致变色纳米微球,然后与戊二醛交联,得到性能稳定的光致变色纤维膜,并考察了PVA/PEI质量比、戊二醛交联以及光致变色纳米微球含量对光致变色纤维膜性能的影响。结果表明:在PVA/PEI的质量比为75∶25,光致变色微球的含量为10%时,经过戊二醛交联的光致变色纤维膜表面光滑,串珠连续且均匀;随着紫外光照的增加,纤维膜的颜色逐步加深,但当光致变色微球的含量大于10%时,颜色不再发生变化;将光致变色纤维膜浸水24h,纤维膜仍保持连续且均匀的多孔纤维结构。根据以上试验看出,纤维膜材料可用于环境领域中,以达到美化环境的目的。  相似文献   

3.
将水性聚氨酯(WPUR)与聚乙烯醇(PVAL)按照不同质量比制备质量分数为8%的纺丝溶液,通过静电纺丝制备WPUR/PVAL复合纳米纤维。运用扫描电子显微镜、傅立叶变换红外光谱仪和X射线衍射仪对WPUR与PVAL质量比不同的纺丝溶液制备的复合纳米纤维的微观形貌和结构进行分析。实验结果表明,PVAL的含量对复合纳米纤维的形成和形貌起着决定性的作用,随着溶液中PVAL含量的增加,纺丝过程中纺丝液逐渐从不连续复合纳米纤维转变为连续均匀的复合纳米纤维,纤维直径逐渐增大,当纺丝液中WPUR与PVAL的质量比为30∶70时,得到的复合纳米纤维形貌最佳,其平均直径为330.8 nm,具有最小标准差,为22 nm,同时随着纺丝溶液中PVAL含量的增加,所得复合纳米纤维的结晶性能增强。  相似文献   

4.
以粒度≤15μm的铝粉和结晶氯化铝按照物质的量比为3.4∶1混合得到无色透明的氯化铝溶胶,接着向氯化铝溶胶中加入含有酒石酸封端剂的硅溶胶获得莫来石纤维前驱体溶胶。研究了酒石酸添加量(w)为1%、2%、3%、4%和聚乙烯醇纺丝助剂添加量(w)为0.25%、0.5%、1%、1.5%、2%以及不同固含量(质量分数,5%~65%)对莫来石纤维前驱体溶胶纺丝性能的影响。结果表明:酒石酸和聚乙烯醇的加入对莫来石纤维前驱体溶胶的纺丝性能有显著影响,当添加3%(w)的酒石酸和1%(w)的聚乙烯醇时,纺丝性能最佳;在固含量为57%(w)时,莫来石纤维前驱体溶胶呈现剪切变稀特性,其纺丝性能最优。  相似文献   

5.
以聚对苯二甲酸丁二醇酯-聚四亚甲基醚二醇(PBT-PTMEG)为改性剂,与聚对苯二甲酸丁二醇酯(PBT)进行共混纺丝,通过控制PBT-PTMEG添加量制备不同PTMEG含量的PTMEG/PBT共混纤维,探讨了PTMEG含量对纤维柔软性及其他性能的影响。结果表明:在共混纺丝过程中,PTMEG作为改性组分与PBT相容性良好,PTMEG质量分数为6%时可纺性好,继续增加至8%时可纺性变差;随着PTMEG含量的增加,PTMEG/PBT共混纤维的初始模量显著降低,断裂强度略有降低,断裂伸长率、断裂比功均逐渐提高,吸湿性及染色性能也得到改善;当PTMEG质量分数为6%、拉伸倍数为2.8时,PTMEG/PBT共混纤维的断裂比功最高达0.98 cN/dtex,初始模量也较低为21.8 cN/dtex,纤维的柔软性得到了明显提升,综合性能最好。  相似文献   

6.
为了制备高效低阻的纳米纤维空气过滤膜,采用静电纺丝技术,制备了醋酸(CA)不同质量分数、不同纺丝时间的CA纳米纤维膜,研究了CA质量分数和纺丝时间对CA纳米纤维膜的微观形貌、透气性、过滤性能等性能的影响。结果发现:随着CA质量分数和纺丝时间的增加,CA纳米纤维膜的透气率先减小后增加,过滤效率和阻力压降均先升高后降低,当CA的质量分数为12%,纺丝时间为60 min时,透气率达到247.67 mm/s,水接触角104°,过滤效率为99.94%,阻力压降为238.14 Pa,此时品质因子达到最大数值为0.030 95 Pa~(-1)。  相似文献   

7.
将聚乳酸(PLA)切片与硝酸处理过的多壁碳纳米管(MWNTs)按质量比19∶1混合制成PLA/MWNTs母粒,再将PLA切片与母粒按不同比例共混熔融纺丝制得PLA/MWNTs共混纤维,研究了不同工艺条件下纤维的力学性能和抗静电性能。结果表明:添加MWNTs质量分数小于0.8%时,可纺性良好,质量分数达到1.0%时,可纺性变差;最佳工艺条件为纺丝温度194.5℃,纺丝速度875 m/min,拉伸温度80℃;PLA/MWNTs共混纤维的抗静电性随着MWNTs含量的增加而递增,当MWNTs质量分数为0.8%,PLA/MWNTs共混纤维的比电阻为6.55×108Ω·cm,摩擦静电压935 V,衰减静电压672 V。  相似文献   

8.
《合成纤维》2017,(7):14-16
采用聚合物熔融共混纺丝方法制备含有不同比例的生物质石墨烯的改性聚酰胺复合纤维,通过对其力学性能、远红外性能和抗菌性能的表征,发现随着生物质石墨烯含量的不断增加,复合纤维的力学性能、远红外发射率和抗菌性能得到改善;当生物质石墨烯质量分数为1%时,纤维的抗菌性能达到最佳。  相似文献   

9.
高强度海藻酸盐纤维的制备   总被引:14,自引:4,他引:10  
采用湿法纺丝方法制备高强度海藻酸盐纤维,研究了影响纤维断裂强度的因素。结果表明:海藻酸钠的β-D-甘露糖醛酸单元(M)/α-L-古罗糖醛酸单元(G)质量比越高,纤维断裂强度越低。采用M/G值为0.32的海藻酸钠为原料,氯化钙水溶液为凝固液,纺丝液质量分数为5.0%,凝固浴质量分数为4.5%,凝固浴温度为40℃,纤维烘干温度为30℃,可制得断裂强度达4.675 cN/dtex的高强度海藻酸盐纤维。  相似文献   

10.
静电纺丝制备的纳米纤维孔隙率高、吸附能力强,可用于高效地处理化工行业油污染问题。聚乳酸(PLA)作为生物可降解材料,来源广泛且不会造成二次污染,具有广阔的应用前景。本文利用自制的熔体微分电纺装置,制备了PLA/乙酰基柠檬酸三丁酯(ATBC)纤维膜,探究了物料性质和增塑剂ATBC含量对PLA纤维形貌及吸油性能的影响,并获得了最佳的纺丝温度和ATBC含量。研究表明,在纺丝温度为240℃、ATBC质量分数为10%时制备的纤维直径为320nm。该纤维膜水接触角为145°,表现出良好的疏水性能,吸油倍率为138.4g/g,是市售PP无纺布吸油性能的4~5倍,保油倍率为85.8g/g。重复吸/放油5次循环后,纤维膜仍具有良好的强度而未发生断裂且可继续进行吸油,重复使用性能较好,可被应用于化工行业油污染处理。  相似文献   

11.
为考察聚合物含量对聚偏氟乙烯(PVDF)静电纺丝纳米纤维膜的结构和性能的影响,在二甲基甲酰胺与丙酮质量比为9:1的条件下,制备了无纺布支撑的PVDF静电纺丝纳米纤维膜,进行了聚合物PVDF含量对纺丝液基本性质与膜的形貌结构及分离性能的影响分析。结果表明,提高纺丝液中PVDF含量,纺丝液的表面张力与电导率降低,纳米纤维间珠粒数量减少,纤维直径增大。直接接触式膜蒸馏脱盐应用实验表明,PVDF的质量分数为12%条件下制备的疏水膜,在盐溶液与冷侧循环水温度分别为80℃与20℃时,其通量可达62.38 kg/(m~2·h),产水电导率为8μS/cm,盐截留率达到99.99%以上。  相似文献   

12.
《塑料》2017,(5)
为了获得手感更好的衣服材料以及减少无针刺法非织造布的工艺流程,采用单针头熔体电纺丝设备对热熔胶TPU进行纺丝,制备了TPU非织造布,通过改变PEG-10000的含量来调控纤维细度和纤维黏结点个数,并采用扫描电镜测算纤维平均直径以及纤维黏结点个数。实验结果表明:当PEG-10000的含量为0时,由于TPU的黏度过大无法纺丝,因而无法获得纤维。随着PEG-10000含量的增加,TPU的黏度逐渐降低,达到可纺的条件,并且可纺性越来越好。一定质量分数的PEG-10000对纤维的细化效果明显,当PEG-10000的含量为6%时,纤维直径最细,并且黏结点个数最多,此时纤维网的力学性能最好。  相似文献   

13.
运用静电纺丝法制备纳米纤维NaMnPO_4作为钠离子电池正极材料。在保证原料比例适宜的情况下,通过改变PVP的用量,结合不同的烧结温度,烧结气氛等条件,探究PVP含量对静电纺丝纤维形貌及正极材料性能的影响。  相似文献   

14.
PET树脂中二氧化钛含量对纤维后拉伸的影响   总被引:2,自引:0,他引:2  
通过改变纺丝温度、拉伸温度、不同长径比喷丝板及油剂 ,研究了不同二氧化钛含量对纤维拉伸性能的影响 ,发现适量添加二氧化钛可改善原丝性能。从纤维的最终性能指标、光泽综合考虑 ,切片中二氧化钛的质量分数不宜超过 0 .0 8%。适当控制纺丝温度及拉伸温度 ,并选择适当的油剂 ,大有光切片可经纺丝超倍拉伸制得高强丝。  相似文献   

15.
采用湿法纺丝技术将生物质石墨烯浆料与海藻酸钠溶液进行共混纺丝,制备生物质石墨烯改性海藻纤维,并对其力学性能、吸湿性能、阻燃性能、抗菌性能、远红外性能进行测试。结果表明,随着生物质石墨烯含量的增加,纤维力学强度先增高后下降,当生物质石墨烯加入量为0.5%时,纤维强度可达1.72cN/dtex。纤维回潮率和极限氧指数(LOI)随生物质石墨烯含量提高而增大,当生物质石墨烯加入量为1.5%时,回潮率为23.36%,极限氧指数为41。少量添加生物质石墨烯,纤维呈现较好的抗菌和远红外性能,且随着生物质石墨烯含量的增加,纤维抗菌和远红外性能不断提高,当生物质石墨烯加入量为1.5%时,纤维对金黄色葡萄球菌、大肠杆菌及白色念珠菌的抑菌率均大于99%,远红外温升为3.3℃,远红外发射率0.9%。  相似文献   

16.
以BTDA-TDI/MDI(P84)三元共聚聚酰亚胺(PI)粉末为原料,采用湿法纺丝技术制备BTDA-TDI/MDI三元共聚PI初生纤维,并对其结构和性能进行表征。实验结果表明:三元共聚PI初生纤维的最高抗断裂强度为0.65 cN/dtex;纺丝浆液PI质量分数19%时所得初生纤维表面较光滑;凝固浴溶液NMP质量分数70%时初生纤维结晶度分别比质量分数60%和80%时结晶度大;不同NMP质量分数凝固浴溶液所得初生纤维的热稳定性相差不大。  相似文献   

17.
将聚乙二醇(PEG)与聚乙烯醇(PVA)溶液混合,加入丁烷四羧酸(BTCA)作为交联剂配制纺丝原液,采用干法纺丝制得BTCA改性PEG/PVA相变储能纤维;研究了BTCA含量、热处理条件对交联程度的影响,并对纤维的结构、形态、储能性能及力学性能进行了分析。结果表明:在热处理温度为180℃,热处理时间为12 min时,纤维可达到良好的交联效果,纤维的交联程度随BTCA含量的增加呈上升趋势,BTCA质量分数为3%时达到平衡;改性纤维中PEG以独立微相区形式存在,而经热处理后可保留在交联网络中;热处理后的改性纤维力学性能随BTCA含量增加而提高,储能性能也增加且稳定;当BTCA质量分数为6%时,热处理后的纤维断裂强度达3.49 cN/dtex,再经沸水处理后纤维相变焓值可达23.01 J/g,PEG保留率达80%。  相似文献   

18.
《合成纤维工业》2016,(4):38-41
以丙烯酰胺(AM)为网络单体,N,N'-亚甲基双丙烯酰胺(BIS)为交联剂,过硫酸铵(APS)为引发剂,采用自由基聚合的方法合成聚丙烯酰胺;以海藻酸钠(SA)为基体,引入聚丙烯酰胺共价交联网络,配制成纺丝原液,用氯化钙作为凝固浴,用湿法纺丝法制备聚丙烯酰胺/海藻酸钙双网络结构复合纤维,并通过正交实验确定最佳工艺参数。结果表明:当SA水溶液的SA质量分数为2%、AM(相对SA)的质量分数为15%、BIS(相对SA与AM总质量)的质量分数为16%、反应温度为60℃、反应时间为1 h,双网络改性海藻酸钙纤维的断裂强度最大达2.628 c N/dtex,增幅达75%;双网络改性海藻酸钙纤维表面的规整程度和光滑程度有所提高,纤维截面孔洞变得细密。  相似文献   

19.
为优化二醋酸纤维素(CDA)纤维的纺丝加工成型工艺,对CDA丙酮纺丝液的流变行为及所纺纤维的表面形貌和力学性能进行了测试。分析质量分数对纺丝液的流变行为的影响并研究纺丝液流变行为与所纺纤维直径及力学性能之间的关系。结果表明:随着CDA质量分数的提高,纺丝液黏度增大,所纺纤维直径增大,纤维强度下降,断裂伸长增大;对于不同特性黏度、质量分数但流变行为相近的纺丝液所纺纤维的直径、力学性能相近;降低二醋片的特性黏度,适当提高纺丝液的质量分数,可实现在保证产品质量的前提下,减少生产成本,提高纺丝速率。  相似文献   

20.
海藻酸钠/聚乙烯醇/银复合纤维的静电纺丝   总被引:2,自引:1,他引:1  
冯燕  孙润军  刘呈坤 《合成纤维》2011,40(12):13-17
采用静电纺丝方法,在不同海藻酸钠/聚乙烯醇质量比、含银量、纺丝电压、纺丝液流速、接收距离条件下,制备了海藻酸钠/聚乙烯醇/银复合纤维,利用扫描电镜分析了纤维直径分布及形态。结果表明:海藻酸钠与聚乙烯醇的质量比和含银量对复合纤维成纤性和纤维形态的影响较为显著。海藻酸钠与聚乙烯醇质量比为2∶8、银占溶质质量分数的0.1%、纺丝电压为20 kV、纺丝液流速为0.1 mL/h、接收距离为8 cm时,纺丝效果最佳,纤维形态最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号