首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吴竞  史铁钧  张方  王启东  周讯 《化工学报》2014,65(6):2372-2377
以3-溴丙炔、腰果酚为原料,利用相转移催化反应合成了炔基化腰果酚树脂,并用FT-IR、1H NMR对炔基化腰果酚的化学结构进行了表征,结果表明在相转移催化剂存在条件下,3-溴丙炔和腰果酚通过Williamson成醚反应成功制备了目标产物。用TG研究固化后的炔基化腰果酚树脂热稳定性能,结果表明,固化后树脂的起始降解温度为419℃,800℃时的残炭率为14%,说明其具有很好的耐热性能。根据DSC曲线,用Kissinger和Flynn-Wall-Ozawa分别计算了热固化反应活化能,分别为143.46 kJ·mol-1和145.15 kJ·mol-1,热固化反应级数都接近1,因此说明这两种模式很适合这种体系。  相似文献   

2.
以3-溴丙炔、异氰尿酸为原料,利用相转移催化剂合成了三炔丙基异氰尿酸酯(TPIC),并用FT-IR、1H NMR对其结构进行了表征。用TGA表征了热固化后的TPIC的热性能。结果表明:热固化后的树脂在375℃开始分解,800℃的残炭率达75%。根据DSC曲线,TPIC的熔点为167℃左右,并用Kissinger、Flynn-Wall-Ozawa和Friedman-Reich-Levi法分别计算了热固化反应活化能,它们分别为46.81、48.70和40.92 kJ·mol-1,热固化反应级数都接近1,并探讨了固化反应过程与机理。通过对比分析表明,这3种方法均适用于TPIC体系。  相似文献   

3.
以3-溴丙炔、异氰尿酸为原料,利用相转移催化剂合成了三炔丙基异氰尿酸酯(TPIC),并用FT-IR、1H NMR对其结构进行了表征。用TGA表征了热固化后的TPIC的热性能。结果表明:热固化后的树脂在375℃开始分解,800℃的残炭率达75%。根据DSC曲线,TPIC的熔点为167℃左右,并用Kissinger、Flynn-Wall-Ozawa和Friedman-Reich-Levi法分别计算了热固化反应活化能,它们分别为46.81、48.70和40.92 kJ·mol-1,热固化反应级数都接近1,并探讨了固化反应过程与机理。通过对比分析表明,这3种方法均适用于TPIC体系。  相似文献   

4.
通过凝胶时间测定、差示扫描量热分析、FT-IR分析研究了乙酰丙酮镍催化含硅芳炔树脂体系的固化反应行为,并计算了反应动力学参数. 结果表明,乙酰丙酮镍对含硅芳炔树脂固化有显著的催化作用,加入0.2%(w)乙酰丙酮镍可较大幅度降低树脂固化反应的活化能和温度,初始固化温度降低约35℃,固化反应活化能为104.2 kJ/mol,比含硅芳炔树脂的固化活化能(121.2 kJ/mol)低;乙酰丙酮镍催化含硅芳炔树脂可发生Glaser偶合、Strauss偶合、环三聚、Diels-Alder和固化反应;树脂固化物保持优异的热稳定性,在氮气气氛下5%失重温度为620℃, 1000℃时残留率为87.8%.  相似文献   

5.
以双酚A和溴丙炔为原料,采用相转移催化合成法合成了二丙炔基双酚A醚,利用红外和核磁对其结构进行了表征。采用示差扫描量热法(DSC)对二丙炔基双酚A醚的固化反应历程进行了研究。分别由Kisserger方程和Ozawa方程求得二丙炔基双酚A醚聚合反应的活化能分别为127.3KJ/mol和131.6KJ/mol。用Crane经验方程求得固化反应的反应级数接近于1。研究表明,二丙炔基双酚A醚具有较低的固化反应活化能以及较宽的加工窗口,这有利于二丙炔基双酚A醚树脂的加工成型。  相似文献   

6.
含硅芳炔树脂热裂解行为及动力学   总被引:1,自引:0,他引:1  
用热失重法(TGA、DTG)分析了含硅芳炔树脂固化物的热裂解动力学,并用Kissinger和Ozawa法计算出含硅芳炔树脂固化物的热裂解的表观活化能分别为149kJ/mol和153kJ/mol,热裂解反应近似于一级反应,据此建立了热裂解的动力学模型。用热裂解-气相色谱-质谱联用(Py-GC-MS)方法对含硅芳炔树脂的热裂解气相产物进行了分析,在热裂解过程中,主要有甲烷、氢气、乙烷、乙烯、水等气体放出。用拉曼光谱、X-射线衍射等分析了含硅芳炔树脂固化物热裂解的残留物结构,残留物是以无定型碳、石墨、SiC为主要成分的陶瓷化结构。  相似文献   

7.
液晶环氧p-BPEPEB改性双酚-F环氧树脂的固化动力学   总被引:1,自引:0,他引:1  
为改进双酚-F型环氧树脂(BPFER)的力学性能与热性能,用差示扫描量热法(DSC)研究了以4,4-二氨基二苯砜(DDS)为固化剂,双-4-环氧丙氧基乙氧基苯甲酸联苯二酚酯(P-BPEPEB)液晶改性BPFER的非等温固化动力学,并结合偏光显微镜(POM)、扭辫分析(TBA)对其形态与热力学性能进行了表征.结果表明静态固化起始温度Ti为108.99℃,峰顶温度Tp为172.95 ℃,固化终了温度Tf为191.98℃,固化反应的平均活化能Ea=53.028 kJ·mol-1,反应级数n=0.88,解释了活化能随转化率变化规律.P-BPEPEB与BPFER共混存在相分离,有两个内耗峰,但随着P-BPEPEB加入量的增加,相容性增大,第一个内耗峰向高温方向移动并旱增大的趋势,有利于提高树脂的耐热陛和耐冲击性能.  相似文献   

8.
紫外光固化低黏度环氧丙烯酸酯的合成   总被引:2,自引:1,他引:1  
引入新的催化剂和新的阻聚剂构成催化-阻聚复合助剂体系,合成了可紫外光固化的低黏度环氧丙烯酸酯树脂,利用傅里叶变换红外光谱、核磁共振氢谱、碳谱对树脂结构进行了表征;研究了复合助剂及常用的催化剂、阻聚剂对反应过程及树脂性能的影响,发现复合助剂体系具有更好的催化和阻聚效果,反应活化能仅为37.69 kJ·mol-1·K-1,所得树脂黏度仅为3 000~4 000 mPa·s(60℃),为市售产品的1/3;最后利用综合热分析仪对树脂固化膜的耐热性能进行了分析.  相似文献   

9.
RTM用含硅芳炔树脂的流变特性与固化反应动力学   总被引:2,自引:1,他引:1  
含硅芳炔树脂(PSA-R)具有优异的耐高温、优良的介电性能、高温力学性能,以及优异的工艺性能,适用于RTM成型工艺,广泛应用于航空航天、电子信息领域.本文采用动态差示扫描量热法(DSC)研究了含硅芳炔树脂的固化反应,试验表明含硅芳炔树脂的固化动力学符合n-级固化反应模型,固化反应级数约为2级,反应活化能为110kJ·mol~-1.用平板流变仪研究了PSA-R树脂的动态粘度及等温粘度变化,研究了凝胶时间与温度的关系,建立了凝胶模型,根据双Arrhenius方程,建立了含硅芳炔树脂的粘度模型,该模型预测粘度与实验结果相吻合.  相似文献   

10.
采用腰果酚、苯酚和甲醛为原料,氨水为催化剂,制备了三种腰果酚含量40%的热固性腰果酚改性酚醛树脂:腰果酚-甲醛/苯酚-甲醛共混酚醛树脂(CF-PF)、腰果酚-苯酚-甲醛共聚酚醛树脂(PCF-A)和混酚(腰果酚-苯酚-双酚)-甲醛共聚酚醛树脂(PCF-B)。借助DSC、TGA、剪切强度等手段对合成树脂性能进行了表征。DSC分析结果表明:三种改性树脂中PCF-B树脂的固化反应活性最高,初始温度、峰温和终温分别为146℃、190℃和259℃,固化反应活性顺序是PCF-BPCF-ACF-PF。TGA结果表明,PCF-A和PCF-B树脂的耐热性能相当,2%和5%失重温度分别是340℃左右和400℃左右,CF-PF树脂耐热性能较低,2%和5%失重温度分别为316℃和376℃。PCF-B的室温和150℃剪切强度分别为8.31MPa和7.74MPa,较PF树脂分别提高27%和71%,增韧效果明显;CF-PF的高温粘接性能最好,250℃和300℃剪切强度分别为5.07MPa和5.15MPa,分别是PF树脂250℃和300℃剪切强度的96%和141%。  相似文献   

11.
通过2,4,6-三(4-羟基苯基)吡啶(HPP)与溴丙炔反应,合成了2,4,6-三(4-炔丙氧基-苯基)吡啶(POPP)。采用FTIR、1H-NMR、13C-NMR和元素分析对其结构进行了表征,并制备了交联树脂P(POPP)。采用旋转流变仪,示差扫描量热分析,动态力学热分析,热失重分析等研究了POPP及P(POPP)树脂的性能。结果表明,POPP树脂可溶于大多数常见有机溶剂,确定其固化工艺为:200℃/2 h+220℃/8 h。P(POPP)具有良好的热性能,玻璃化转变温度高于其热分解温度,氮气中5%热失重温度达435℃,25℃下10~106 Hz频率内介电常数和介电损耗角正切值分别小于3.14和0.01。  相似文献   

12.
合成了一种液体乙烯基硅树脂,并用FT-IR、GPC、1H NMR和29Si NMR等手段对其结构进行表征。采用非等温差示扫描量热法(DSC)研究了乙烯基硅树脂/苯基含氢硅油体系的固化反应动力学,用Kissinger方程和高级等转化率法(Vyazovkin方法)分别计算了该体系的表观活化能Ea,用Málek法进行模型拟合动力学分析,通过T--外推法确定该体系的固化工艺参数。结果表明:Kissinger法和Vyazovkin法得到的活化能分别为85.3kJ·mol-1和84.0 kJ·mol-1,二者所得结果的差别较小;乙烯基硅树脂体系固化动力学符合-esták-Berggren(m,n)模型,m和n分别为0.092、1.440,拟合曲线与实验的DSC曲线吻合;该树脂体系的近似凝胶化温度为89.1℃,固化温度为127.8℃,后处理温度157.6℃。  相似文献   

13.
采用差示扫描量热法(DSC)考察了乙烯基酯树脂DERAKANE~(TM)411-350的固化反应,采用不同的升温速率,得到了乙烯基酯树脂(VER)的固化温度与升温速率的曲线,分析计算得到合理的树脂固化工艺温度:可选择85℃为凝胶温度,100℃进行固化和后处理。分别采用Kissinger法和Ozawa法求出了VER固化反应的表观活化能ΔE,其值为:71.91 kJ·mol~(-1)(Kissinger法);74.41 kJ·mol~(-1)(Ozawa法)。此外,由Crane方程还得到了固化反应的反应级数n=0.92。  相似文献   

14.
采用非等温差热分析(DTA)研究了竹粉(PB)对液化竹基酚醛树脂(PBF)固化行为及固化动力学的影响,求出固化反应的表观活化能、反应级数及频率因子等参数,进而建立了复合体系的固化反应动力学模型。实验结果表明:加入竹粉后,体系的固化峰顶温度、表观活化能、反应级数和频率因子分别降低至110.5℃、57.27kJ.mol-1、1.0079、1.99×105 s-1(纯PBF树脂的上述指标分别为122.5℃、63.46 kJ.mol-1,1.0173和8.04×105 s-1),竹粉的加入加速了PBF的固化反应过程。  相似文献   

15.
以苯酚、腰果酚、甲醛为原料,NaOH为催化剂,乙二醇为助剂,合成了可发性酚醛树脂,通过粘度,固含量,韧性测试研究了原料的配比,腰果酚替代苯酚的比例,催化剂用量,反应时间,反应温度及乙二醇用量对合成树脂性能的影响并通过IR,TG分析对树脂结构及耐热性进行了表征。结果表明,适宜的反应条件为:F/P比(甲醛与总酚物质的量比值)1.6,腰果酚替代量20%,催化剂用量1%,反应时间3 h,反应温度80℃,乙二醇质量分数10%~15%。以腰果酚制备的CPF树脂耐热性变化不明显,拉伸强度为22.34 MPa,断裂伸长率3.08%,冲击强度3.56 kJ/m2,较PF树脂有很大提高。  相似文献   

16.
在碱性条件下,以腰果酚部分代替苯酚与甲醛反应制得腰果酚改性酚醛树脂,并以该树脂为原料制备腰果酚改性酚醛树脂泡沫。结果表明:当苯酚/腰果酚物质的量比为9/1、缩聚反应温度90℃、催化剂加入量为苯酚和腰果酚总质量4%时,所得树脂黏度为25 Pa·s,符合最佳发泡黏度范围。当苯酚/腰果酚物质的量比为9/1时,改性树脂在400℃时的残炭量(94.6%)要比未改性树脂的残炭量高7.1%,压缩强度由改性前的0.08 MPa提高到改性后的0.14 MPa。扫描电镜结果表明:在相同条件下,改性后的酚醛树脂泡沫泡孔更为均匀。  相似文献   

17.
以膦腈环核腰果酚环氧树脂(EHCPP)为单体制备均聚固化物,借助差示扫描量热分析仪研究其固化行为。计算出固化反应动力学参数:表观活化能E_a=85.452 kJ/mol,表观频率因子A=1.86×10~(11) min~(-1),反应级数n=0.94;并得到固化反应动力学模型:d_α/d_t=1.856×10~(11)·e~(-10278/T).(1-α)~(0.94)。研究结果表明:环氧树脂单体均聚物在850℃时,残碳率为14.4%,理论极限氧指数为23.3;膦腈的引入显著提高了材料的热稳定性,材料从易燃级别提升为可燃级别,具有较低的模量和玻璃化转变温度(6.9℃)。  相似文献   

18.
通过DSC分析研究了不同软化点的双环戊二烯(DCPD)酚型环氧与DCPD苯酚树脂在溴化阻燃树脂体系中的固化反应特性并测试了其FR-4覆铜板的性能。结果表明:体系固化反应温度范围较大,DCPD酚型环氧软化点为50,80、90℃时,树脂体系反应活化能分别为98.3,82.3与74.2 kJ/mol。其制成板材的Tg在150℃以上,介电性能良好。随着DCPD酚型环氧树脂软化点的提高,板材玻璃化温度明显提高,高温高压下其吸水率降低,而热分解温度、粘接性及介电性能无明显变化。  相似文献   

19.
在原苯酚甲醛高邻位树脂体系中引入具有长链烷基的取代酚——腰果酚进行改性,通过IR、DSC、TG等手段对高邻位腰果酚-苯酚-甲醛树脂的结构、固化性能及耐热性进行了分析,结果表明,合成树脂结构中含有腰果酚,且树脂结构属于高邻位结构,该树脂耐热性优于苯酚甲醛高邻位树脂;腰果酚的引入使固化速度和时间稍有减慢,但不影响固化工艺.制备了腰果酚-苯酚-甲醛-丁腈胶黏剂,胶黏剂具有优异的韧性及粘接性能.  相似文献   

20.
以天然资源腰果酚合成了1种含有羟基的苯并恶嗪(CBozH),并利用红外光谱(FT-IR)及核磁共振光谱(1H-NMR和13C-NMR)表征了其化学结构。采用非等温示差扫描量热(DSC)法研究了CBozH的热固化反应过程,通过Kissinger方程、Crane方程和T-β外推法得到了该体系的固化反应温度及动力学参数。研究表明,CBozH的热固化反应表观活化能为85.47 kJ/mol,反应级数为0.909 4,凝胶温度为181℃,固化温度为217℃,后固化温度252℃。热重分析表明,CBozH开环聚合物(PCBozH)具有较好的热稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号