首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
朱顺  郭琦  张大伟  杨庆春 《化工学报》2019,70(2):772-779
为减少传统煤制乙二醇过程资源利用效率低和CO2排放量高等问题,提出了一种集成CO2高效利用的煤制乙二醇过程,并对其进行了全流程建模及系统分析。与传统过程不同,新过程利用焦炉气来提高其资源利用率和能量效率,集成甲烷干重整与湿重整技术降低CO2排放。在全流程建模的基础之上,对新工艺的关键操作参数进行了分析与优化。结果表明,焦炉气的最佳进料比和甲烷蒸汽重整反应的分配比为0.68和0.74。与传统过程相比,新工艺的CO2排放降低了94.05%,同时?效率提高了15.17%。  相似文献   

2.
我国乙二醇对外依存度居高不下,而富煤少油的资源特性使得我国煤制乙二醇技术具有较好的成本与原料优势,发展迅速。本文综述了国内外煤制乙二醇技术的技术现状和发展趋势,重点介绍了煤气化、草酸二甲酯合成和乙二醇合成与精制等关键单元技术的技术特征、工艺流程和技术进展,并分析了相关单元对整个煤制乙二醇系统技术经济性能的影响。针对现有煤制乙二醇技术存在能耗高、质能效率低和CO2排放大的问题,着重讨论了集成CO2高效利用的煤与富氢资源联供制乙二醇集成工艺的进展,包括耦合焦炉气、页岩气和绿氢等资源的新工艺等。以焦炉气为例,集成不同重整技术的新工艺使得传统工艺的碳效率和?效率分别提升了23.35%~39.17%和4.25%~10.12%,生产成本降低了8.73%~19.88%,内部收益率提高了3.6%~9.6%。因此,集成富氢资源与CO2高效利用的煤制乙二醇创新工艺是该行业向高效-经济-清洁可持续发展的重要方向。  相似文献   

3.
针对传统煤制乙二醇过程CO2排放高和资源利用率低等问题,本文提出了一种耦合固体氧化物电解池(SOEC)的煤制乙二醇新工艺(SO-CtEG)。新工艺通过集成固体氧化物电解池制氢技术,避免了水煤气变换单元和空分单元,也有效降低了煤气化和酸性气体脱除单元的处理规模。在全流程建模与模拟的基础之上,进行了详细的技术经济分析与灵敏度分析。结果表明,SO-CtEG新工艺的碳元素利用效率和?效率分别是传统煤制乙二醇项目的2.16倍和1.48倍。与传统煤制乙二醇过程相比,SO-CtEG新工艺总投资费用降低23.64%、生产成本节约17.14 %,内部收益率提高8.85%。因此,新工艺不但可以提高风光消纳能力和减少传统煤制乙二醇的碳排放,还具有更佳的技术经济环境性能,是未来煤制乙二醇行业具有良好发展前景的工艺路线之一。  相似文献   

4.
满奕  杨思宇  萧鸿华  钱宇 《化工学报》2015,66(12):4941-4947
近年来中国的煤制天然气项目快速发展。然而煤制天然气项目的CO2排放量大、污水产量高难处理,生产过程能效低。与此同时,中国焦炭工业每年产生约700亿立方米的副产物焦炉气,这些富氢的焦炉气大多被燃烧或直接排放进入大气,对环境造成严重影响,同时还浪费了巨大的经济价值。煤和焦炉气联供制天然气新工艺可有效解决这些问题。焦炉气与煤元素互补,焦炉气中的氢气可用来调节合成气的氢碳比;甲烷可通过甲烷干重整过程降低煤制烯烃过程排放的CO2,提高碳元素利用率,实现节能减排。本文针对煤和焦炉气联供制天然气这个新的工艺过程进行建模、模拟与分析,发现新过程的能效比煤天然气烃过程提高了约8个百分点,而CO2排放量则减少了约60%。  相似文献   

5.
满奕  杨思宇  项东  钱宇 《化工学报》2014,65(12):4850-4856
由于煤富碳少氢,煤制烯烃过程生产1 t产品将排放约5.8 t CO2.与此同时,中国焦炭工业每年产生约7×1010 m3的副产物焦炉气,这些富氢的焦炉气大多被燃烧或直接排放进入大气,对环境造成严重影响的同时还浪费了巨大的经济价值.本文对焦炉气辅助煤制烯烃的新过程进行了建模模拟与系统分析.焦炉气与煤元素互补,焦炉气中的H2可用来调节合成气的氢碳比;CH4可通过甲烷水蒸气重整和甲烷干重整两个过程,提高合成气的氢碳比的同时降低煤制烯烃过程排放的CO2,提高碳元素利用率,实现节能减排.这个新的联供过程的能效比煤制烯烃过程提高了约10个百分点,而CO2排放量则减少了约95%.  相似文献   

6.
为解决煤化工过程资源利用率低和碳排放高的问题,有研究者提出以天然气、焦炉气、页岩气等富氢资源和煤炭资源联供方案,旨在实现源头碳减排。文章指出依据联供过程技术的差异,较有代表性的方案可分为集成甲烷部分氧化和集成甲烷干/水蒸气重整的气煤联供过程。文章以生产甲醇为例,从资源利用和经济效益等方面对集成甲烷部分氧化和集成甲烷干/水蒸气重整的气煤联供过程进行分析和比较。集成甲烷部分氧化的工艺碳元素利用率达到57.9%,每吨甲醇排放CO2为1.50t,较传统煤制甲醇工艺排放减少37.5%。甲醇产品成本稍低于传统工艺。集成甲烷干/水蒸气重整工艺的碳元素利用率最高,达到83.7%。减排效果最明显,每吨甲醇排放CO2为0.90t,较传统工艺排放减少62.5%,但是由于CO2转化增加能耗,甲醇产品成本有所提升。由于气煤联供过程有利于CO2减排,当碳税高于65CNY/tCO2时,两个气煤联供工艺的生产成本低于传统的煤制甲醇工艺。  相似文献   

7.
《煤化工》2010,(4)
<正>2010年8月,由大连普瑞特、山东铁雄能源、成都五环新瑞合作完成的我国首套焦炉气制天然气试验装置在山东铁雄能源煤化有限公司焦化厂完成1 000h全流程连续试验,目前该项目已通过山东省技术鉴定。焦炉气中CH_4、CO、CO_2总含量近40%,H_2含量高。焦炉气通过甲烷化反应,使绝大部分CO、CO_2等转化成CH_4,得到主要含  相似文献   

8.
二氧化碳重整制甲醇过程对碳源高效利用和环境保护具有重要意义,可作为替代传统高能耗、高排放水蒸气重整过程的途径。用AspenPlus软件模拟链式循环二氧化碳重整的甲烷制甲醇过程。结果表明,该过程的?损失主要集中在化学过程,占总?损的76.47%,其中燃烧反应与重整反应分别占41.62%和27.69%,而甲醇合成反应与水汽变换反应分别占3.55%与3.61%。与传统水蒸气重整制甲醇过程相比,在原料甲烷输入量一定情况下,二氧化碳重整制甲醇系统的重整过程比水蒸气重整过程?损失减少21.44%,水蒸气消耗量减少77.02%,整体系统二氧化碳排放量降低了25.89%,甲醇的产量提高了12.03%。随着重整反应温度的提高,?效率和甲醇产量均出现先升高、后平稳的趋势,并在980℃达到最大值。此外,较低的重整反应压力有利于提高甲醇产量。  相似文献   

9.
二氧化碳重整制甲醇过程对碳源高效利用和环境保护具有重要意义,可作为替代传统高能耗、高排放水蒸气重整过程的途径。用Aspen Plus软件模拟链式循环二氧化碳重整的甲烷制甲醇过程。结果表明,该过程的?损失主要集中在化学过程,占总?损的76.47%,其中燃烧反应与重整反应分别占41.62%和27.69%,而甲醇合成反应与水汽变换反应分别占3.55%与3.61%。与传统水蒸气重整制甲醇过程相比,在原料甲烷输入量一定情况下,二氧化碳重整制甲醇系统的重整过程比水蒸气重整过程?损失减少21.44%,水蒸气消耗量减少77.02%,整体系统二氧化碳排放量降低了25.89%,甲醇的产量提高了12.03%。随着重整反应温度的提高,?效率和甲醇产量均出现先升高、后平稳的趋势,并在980℃达到最大值。此外,较低的重整反应压力有利于提高甲醇产量。  相似文献   

10.
针对焦炉气制甲醇驰放气中大量氢气及其空分单元中大量氮气未被有效利用这一问题,建立了焦炉气制甲醇联合驰放气合成氨过程模型,并采用氢资源利用率、?效率和产品成本等技术指标分析比较2种工艺流程的技术经济性能。在新流程中,焦炉气制甲醇驰放气通过变压吸附分离得到氢气和其它可燃气体,其中氢气与空分单元的氮气用于合成氨。焦炉气联产甲醇和氨过程将氢利用率由63.4%提高到91.9%,其?效比焦炉气单产甲醇过程提高约10%。尽管焦炉气联产过程投资比单产甲醇过程高81.3%,但其产品成本低11.2%。  相似文献   

11.
基于Aspen Plus流程模拟软件,完成以煤为原料的煤焦化、煤气重整和乙二醇合成等工段的全流程模拟,采用反应精馏技术设计了年产20万t焦炉煤气制乙二醇工艺。模拟结果表明乙二醇产品纯度为99.92%,回收率为98.90%,其计算结果与文献值吻合,产品达到了聚酯级标准。  相似文献   

12.
传统的煤制甲醇过程所需合成气的氢碳比为2.1左右,而煤气化粗合成气氢碳比仅为0.7左右,因此需要将部分合成气进行变换来调节氢碳比。然而,变换气与未变换气混合后使得CO_2浓度降低,从而导致CO_2捕集能耗增加。提出了一种低能耗捕集CO_2煤基甲醇和电力联产过程。新联产过程中部分粗合成气首先经过变换,将CO转变为H_2和CO_2,CO_2浓度提高,在此时进行CO_2捕集可实现捕集能耗的降低。经CO_2捕集后,得到富H_2气体,富H_2气体分流后与另一部分煤气化粗合成气混合调节甲醇合成的氢碳比。对新的过程进行了建模、模拟与分析。结果表明相比传统的带CO_2捕集的煤制甲醇和IGCC发电过程,新的联产过程的能量节约率可达到16.5%,CO_2捕集能耗下降30.3%。  相似文献   

13.
魏爽 《山东化工》2023,(2):109-112+119
煤炭是世界主要能源之一,但其转化和利用过程伴随着高碳排放和高能耗。煤制乙二醇工艺的二氧化碳排放量和能耗远高于石油和天然气路线。在全球碳中和的背景下,减少煤制乙二醇工艺的碳排放对于该行业的未来发展至关重要。本项工作,提出了一种新型煤制乙二醇工艺:与Allam循环和水电解制氢相结合的新型煤制乙二醇工艺(CTEG-AEH)。在整个流程模拟和建模过程中,比较了煤制乙二醇工艺与传统工艺的技术经济性。因此,具有CO2捕集功能的Allam循环发电技术可以促进传统煤制乙二醇工艺的低碳和经济发展,降低水电解制氢技术的电耗。该工作可为工业发展提供参考。  相似文献   

14.
我国能源结构决定了以煤为主的甲醇生产路线。传统煤制甲醇过程主要存在过程能量效率低、CO2捕集能耗高等问题。本文提出了一种化学链空分联合化学链制氢的煤制甲醇新过程,以降低能耗、二氧化碳排放及提高能源效率。化学链空分技术的集成可以替代传统煤制甲醇过程的空气分离单元,并在一定程度上降低能耗。化学链制氢技术的集成,一方面可以替代水煤气变换装置,并且可以极大程度降低二氧化碳捕集能耗;另一方面,化学链制氢技术还可生产用于调整合成气氢与碳比的氢。本文对新过程的核心单元进行了参数优化以及全流程的模拟,基于模拟对新过程的性能进行了分析,结果表明新过程与传统的煤制甲醇过程相比,空分和二氧化碳捕集能耗分别降低了41%和89%。同时,新过程的能量效率提高了18%,二氧化碳排放量降低了45%。  相似文献   

15.
正近日,鄂托克旗建元煤焦化有限责任公司26万吨/年乙二醇项目建设全面进入收尾阶段,设备、管道安装已基本完成,保温和伴热完成75%,目前正在进行设备单机试车,预计2020年6月份投产。相较于传统煤制乙二醇项目,焦炉煤气制乙二醇投资和占地均相对较低。项目建设不涉及煤制乙二醇制气工段的主要设备,如煤储运设备、气化炉、变换、低温甲醇洗设备、黑水处理设备、硫回收设备及液化气站等;空分和锅炉也都比同等规模煤制乙二醇小。从资源利用和环境角度看,焦炉尾气从  相似文献   

16.
甲烷化是焦炉气制天然气、煤制天然气生产流程的关键步骤,为打破国外技术垄断,国内研究机构积极进行技术开发。系统梳理了甲烷化技术的国产化研究进展,分析了焦炉气甲烷化技术的应用现状,探讨煤制天然气甲烷化技术的应用前景,并就降低首次工程应用风险提出几点建议。国内甲烷化技术已经实现广泛开发,焦炉气甲烷化技术成功实现工业化应用,其国内市场占有率高于国外技术。煤制天然气甲烷化技术已成功开发,工业化应用前景广阔,首次工程应用时应注重经验借鉴、安全分析及设备选型等。  相似文献   

17.
夏晨  谢晓敏  张庭婷  黄震 《煤化工》2015,43(1):9-12,16
建立了适合我国焦炉气制甲醇生命周期能源消耗与排放的分析模型,进行了焦炉气制甲醇生命周期的分析研究。研究发现,焦炉气制甲醇生命周期以原煤消耗为主,原油消耗下降为占化石能源消耗结构的1%。在总能源消耗方面,焦炉气制甲醇高于传统汽油和煤气化制甲醇路线,其在燃料阶段的能源消耗是传统汽油的6.9倍;与煤气化制甲醇相比,燃料阶段的能耗高出煤气化制甲醇约11%。在温室气体排放方面,焦炉气制甲醇路线温室气体的排放量约是传统汽油的1.8倍,其CO2和GHGs排放比煤气化制甲醇路线的少10%以上。  相似文献   

18.
焦炉气气氛下煤加氢热解研究进展   总被引:6,自引:3,他引:6  
煤-焦炉气共热解是力图降低传统煤加氢热解工艺投资和工业运转 和的新工艺,近年来已引起人们广泛注意。本文平述了近期国内外利用焦炉气代替氢气作煤加氢热解反应气工艺的可行性以及热解温度和焦炉气组分对热角产品影响方面的研究进展。  相似文献   

19.
为深度利用焦炉气资源,以焦炉气为原料进行转化并生产高附加值化学品,实现焦化企业节能减排和提高经济效益,结合理论及工程经验,对不同焦炉气制取乙二醇的技术方案进行全工艺流程优化,重点对比了焦炉气催化部分氧化和非催化部分氧化技术,同时对全厂工艺方案进行了经济性分析。结果表明:焦炉气转化制取合成气对全厂工艺方案影响较大,采用焦炉气非催化氧化技术制取合成气,合成气经净化和分离后制取乙二醇全厂工艺方案更优,具有投资低、消耗低和流程短等优点,乙二醇生产成本为3 974元/t,其财务内部收益率分别为25. 38%(税前)和20. 80%(税后),盈利能力较强,具备良好的经济效益和广阔的应用前景。  相似文献   

20.
在“碳达峰、碳中和”的背景下,传统煤制甲醇工艺存在CO2排放强度大、能耗高等问题成为制约煤制甲醇工艺发展的瓶颈问题。本研究基于外源性的绿氢,重构粉煤气化煤制甲醇工艺,省掉了空分单元、变换单元,开发了短流程低温甲醇洗单元,提出了粉煤气化集成绿氢的近零碳排放煤制甲醇新工艺。从碳元素利用率、CO2排放、成本分析等角度对新工艺进行了评价。结果表明,与传统煤制甲醇工艺相比,新工艺碳元素利用率从41.50%提高到95.77%,CO2直接排放量由1.939降低至0.035 t·(t MeOH)-1,通过分析H2价格与碳税对产品成本的影响发现,当氢气价格和碳税分别为10.36 CNY·(kg H2)-1和223.3 CNY·(t CO2)-1时,两种工艺的产品成本相当。新工艺不仅减少了煤制甲醇过程碳排放,而且可以提高可再生能源就地消纳能力,具有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号