首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
一种用水氯镁石生产氢氧化镁、镁和镁铝尖晶石的方法,属于镁冶金和镁化工领域。本发明以水氯镁石为原料电解生产氢氧化镁、氢气和氯气,然后以氢氧化镁煅烧获得的氧化镁为原料真空热还原生产金属镁和镁铝尖晶石。  相似文献   

2.
以轻烧粉和氯化铵反应为出发点,研究了氧化镁蒸氨反应过程的动力学和反应机理。结果表明:当反应30 min时,70~90 ℃条件下溶液中镁离子浓度约为0.14 mol/L,100 ℃时浓度为0.5 mol/L。XRD结果表明,蒸氨过程中未反应生成Mg2+的氧化镁以氢氧化镁存在于滤渣中。随着煅烧温度的升高,氧化镁水化反应活化能逐渐增加。当煅烧温度为600 ℃时,反应活化能为64.789 9 kJ/mol;当煅烧温度为800 ℃时,反应活化能为81.350 6 kJ/mol。氢氧化镁和氧化镁按不同物质的量比混合进行蒸氨反应时,蒸氨速率随体系中氢氧化镁含量的增加而升高。氧化镁蒸氨体系可分为2个阶段:第一阶段,氧化镁在铵盐体系中进行水化反应生成氢氧化镁,同时部分氧化镁和氢氧化镁进行蒸氨反应生成镁离子;第二阶段,整个体系完全变成氢氧化镁蒸氨体系。  相似文献   

3.
综述了六氨氯化镁的理化性质和制备方法。六氨氯化镁可通过高沸点溶剂体系合成法、水氨体系合成法、低沸点溶剂体系合成法、硅化镁制硅烷合成法等方法制取。重点综述了六氨氯化镁的应用。以六氨氯化镁为原料采取热解法可制取无水氯化镁,无水氯化镁是电解法制金属镁的原料,用途十分广泛;利用六氨氯化镁还可制取高纯氢氧化镁、阻燃级氢氧化镁、碱式碳酸镁、工业氧化镁、活性氧化镁等系列镁化合物产品。  相似文献   

4.
高纯无水氯化镁制备技术的进展   总被引:9,自引:0,他引:9  
无水氯化镁是电解金属镁的原料,也是众多催化剂和医药的中间体. 无水氯化镁的制备分为含水氯化镁的脱水和氧化镁的氯化两个途径. 氯化镁脱水是以水合氯化镁、苦卤、光卤石为原料,利用有机溶剂蒸馏、分子筛吸附、气体保护加热、氯化镁氨络合物分解等技术进行脱水. 六氨氯化镁是络合物分解法的重要中间体,其合成过程分为高沸点溶剂体系、水-氨体系、低沸点溶剂体系等不同的合成路径. 氧化镁氯化转化是以菱镁矿、水镁石、氢氧化镁或氯化镁脱水产生的氧化镁为原料,分为气体介质中氧化镁的氯化和熔融盐介质中氧化镁的氯化. 无水氯化镁制备技术经历几十年不断的探索,取得了一些进步,但彻底改变耗能高、污染腐蚀严重、流程复杂的工艺过程,开发流程简单、低污染腐蚀、低成本的绿色工艺仍然需要更深入的研究.  相似文献   

5.
无水氯化镁的制备技术及发展趋势   总被引:2,自引:0,他引:2  
镁是极其重要的有色金属材料,无水氯化镁正是电解金属镁的原料。介绍了无水氯化镁的技术指标,以及由六水合氯化镁制备无水氯化镁过程中脱水过程的理论研究情况。叙述了无水氯化镁的国内外生产工艺现状,并对无水氯化镁近几十年来的研究情况进行了分析和对比。分析了中国丰富的镁资源及多种工艺生产无水氯化镁及镁产品的优势。通过对无水氯化镁的制备技术的分析、总结,提出了中国无水氯化镁产品今后的工艺开发、市场情况及发展趋势。  相似文献   

6.
六氨氯化镁初级成核研究   总被引:2,自引:0,他引:2       下载免费PDF全文
引言 水氯镁石脱水制备无水氯化镁作为电解镁的原料是目前金属镁工业发展最先进、理想的工艺路线,因此,对水氯镁石脱水过程的研究较多[1,2].反应结晶法作为一种高效、低能耗、低污染的制造和分离技术,以及控制结晶产品特定物理形态的手段,近年来受到国际工业界和科学界的格外关注.  相似文献   

7.
水氯镁石脱水技术的研究进展   总被引:2,自引:0,他引:2  
镁化合物与金属镁及其合金具有重大工业应用价值。中国海洋和盐湖卤水中含有巨量的氯化镁,尤其是盐湖提钾后老卤经蒸发具有宏量水氯镁石(MgC l2·6H2O)产出,水氯镁石经脱水后得到的无水氯化镁是电解镁最佳的原材料。然而,水氯镁石脱水过程中存在许多技术难题一直阻碍着水氯镁石资源的广泛应用。主要介绍水氯镁石脱水技术的发展现状,内容包括气体保护法、复盐法和氨络合法等,指出了中国盐湖镁资源的巨大利用前景。  相似文献   

8.
高活性氧化镁通过水合反应制得氢氧化镁,通过添加不同浓度的MgCl_2,研究水化剂氯化镁浓度、水化温度对氢氧化镁晶体生长的影响。粒度仪、X-射线衍射仪(XRD)和扫描电子显微镜(SEM)的检测表明,氧化镁水合制备氢氧化镁的纯度较高;水化温度70℃,氯化镁浓度低于1.00 mol/L时,产品为片状氢氧化镁;当氯化镁浓度高于1.50 mol/L时,出现条状氢氧化镁;在160℃下高温水热,均能得到片状氢氧化镁;氯化镁浓度为1.00 mol/L时,产品形貌为形状规则的片状晶体。  相似文献   

9.
高活性氧化镁通过水合反应制得氢氧化镁,通过添加不同浓度的MgCl_2,研究水化剂氯化镁浓度、水化温度对氢氧化镁晶体生长的影响。粒度仪、X-射线衍射仪(XRD)和扫描电子显微镜(SEM)的检测表明,氧化镁水合制备氢氧化镁的纯度较高;水化温度70℃,氯化镁浓度低于1.00 mol/L时,产品为片状氢氧化镁;当氯化镁浓度高于1.50 mol/L时,出现条状氢氧化镁;在160℃下高温水热,均能得到片状氢氧化镁;氯化镁浓度为1.00 mol/L时,产品形貌为形状规则的片状晶体。  相似文献   

10.
以聚乙烯吡咯烷酮为控制剂,氯化镁、氢氧化钠和氨水为原料,经静态反应制备出球形氢氧化镁前驱体,再经煅烧得到球形氧化镁。研究了控制剂种类、控制剂用量、反应物浓度、反应时间等因素对球形氧化镁形貌的影响,并用XRD、SEM等分析手段对产物做了表征。结果表明:在控制剂为聚乙烯吡咯烷酮、添加量为1.0%(质量分数)、氯化镁浓度为1.0 mol/L、氢氧化钠浓度为0.25 mol/L、反应时间为24 h的条件下,获得球形氢氧化镁前驱物;前驱物氢氧化镁在600 ℃下煅烧2 h,制得的球形氧化镁颗粒大小均匀、分散性好、球形度高,平均粒径为4.53 μm。  相似文献   

11.
李琦  陈延信  赵博  姚艳飞 《无机盐工业》2014,46(10):30-33,71
碳酸钙渣是利用磷石膏制备硫酸铵时排放出的废渣,其主要矿物成分是碳酸钙,通过煅烧可以得到高活性石灰进行再利用。利用高固气比悬浮态煅烧技术,对碳酸钙渣快速煅烧工艺进行了中试试验,得到表观分解率为95%以上的煅烧产品,且表现出较高的活性;在此基础上,与贵州瓮福磷肥厂合作采用高固气比悬浮煅烧-快速冷却技术建成一条碳酸钙渣制备活性石灰的工业试验线,产品中氧化钙的质量分数最高可达到59%,碳酸钙分解率在97.7%以上,产品的活性高,多数集中在160~180 s。系统烧成热耗为4 402 kJ/kg,能耗及产品质量均优于传统工艺。  相似文献   

12.
以湿法磷酸生产的经浮选后的废弃磷尾矿为原料,从其中分离回收钙镁,制备新型土壤调节剂糖醇钙镁,对磷尾矿进行了煅烧活化和酸浸动力学的实验研究。基于热重分析及钙镁酸解浸出率分析的研究结果表明,磷尾矿中白云石热分解过程为吸热反应,白云石热分解遵循二维相界面反应模型;钙、镁浸出反应表观活化能分别为13.157、23.023 kJ/mol;煅烧活化后的尾矿酸浸出速率受内扩散控制,获得白云石热分解及钙、镁浸出反应的动力学方程。  相似文献   

13.
以六水氯化镁为原料,氢氧化钠和氨水为沉淀剂,采用直接沉淀法合成出前驱物氢氧化镁粉体;再将氢氧化镁煅烧后得到氧化镁粉体产品。通过X射线衍射(XRD)、扫描电镜(SEM)和红外吸收光谱(FT-IR)等对所得产品进行表征分析。结果表明,在煅烧温度为400℃,煅烧时间为3h的条件下,可以得到高分散性的颗粒状氧化镁;在400℃下煅烧8h得到的氧化镁粉体的红外吸收峰出现了红移和蓝移同时并存现象。  相似文献   

14.
以工业氢氧化镁为原料,采用水热-煅烧法和碳化-煅烧法制备氧化镁。前者将原料氢氧化镁通过水热制备六角片状氢氧化镁,再在适当温度下煅烧氢氧化镁得到活性氧化镁;后者是先用CO2将Mg(OH)2转化成片层花状碱式碳酸镁或三水碳酸镁晶须作为前驱体,通过煅烧得到高活性的氧化镁。研究了前驱体、煅烧温度和煅烧时间等条件对MgO活性的影响,结果表明,以MgCO3·3H2O晶须制备的MgO表现出优异的活性,其柠檬酸值为8.45 s,吸碘值为262.14 mg·g-1。研究了制备的活性MgO对Pb2+的吸附性能,显示出其对Pb2+具有良好的吸附作用,饱和吸附量达到364 mg·g-1,其过程符合Langmuir吸附模型。  相似文献   

15.
Conclusions Experimental work was carried out to obtain from bromine liquors of bischofite of the Volgograd deposits magnesium oxide, using low capacity industrial equipment for chemical purification of magnesite, including a recuperator, a tank-collector, a spray-reactor, a cyclone, an absorption column, spray traps, a vacuum pump, and a filter press.We worked out the parameters for the processes of boiling off the liquor, thermohydrolysis of the magnesium chloride, absorption of the hydrogen chloride with the production of hydrochloric acid, washing and leaching the hydrolytic magnesium oxide, and filtration of the resulting magnesium hydroxide. During the reprocessing of the liquor containing the bischofite, using this technology, without preliminary purification to remove boron and sulfates, we obtained magnesium hydroxide with a high purity level (98.5–99.5% MgO on the calcined weight).It is shown that the magnesium hydroxide thus obtained is a high-quality raw material for the production of fused and sintered periclase with a purity of 98–99.5% MgO. The technology of sintering, including carbonization of the magnesium hydroxide, hot palletizing without bond, and firing at moderate temperatures, ensures the production of densely sintered periclase. Tiles with inserts made from fused periclase of high purity with a clear anisotropic structure facilitate the casting of two heats through the gate valves.The results obtained can serve as the starting data for the development of specifications (TLZ) and planning the production of magnesium oxide from the debrominized bischofite liquors at the Volgograd site using the thermohydrolysis method. We need to solve the problem of the use of the 20% HCl that is obtained.Translated from Ogneupory, No. 1, pp. 27–30, January, 1988.  相似文献   

16.
利用硫酸镁废液制备活性氧化镁工艺研究   总被引:2,自引:0,他引:2  
硫酸法处理高镁红土镍矿过程中产生大量的硫酸镁废液,提出利用硫酸镁废液制备活性氧化镁工艺.工艺过程:采用石灰中和硫酸镁废液至pH为12左右得到氢氧化镁溶液,氢氧化镁溶液经二氧化碳微压碳化得到碳酸氢镁溶液,碳酸氢镁溶液经热解得到碱式碳酸镁沉淀,沉淀物经过滤、洗涤、干燥、焙烧得到活性氧化镁.在最佳条件下制备的活性氧化镁达到HG/T 3928-2007《工业活性轻质氧化镁》要求.采用硫酸镁废液制备活性氧化镁,一方面可以解决硫酸镁废液的治理问题,为提高高镁红土镍矿资源的综合利用率开辟一条新途径:另一方面可以制备高附加值的活性氧化镁产品.  相似文献   

17.
Various processes for manufacturing magnesium hydroxide have been considered and tested in order to decide whether they can be employed to the full-scale production of this product from natural sources (bischofite and magnesium chloride brines). The process for the synthesis of magnesium hydroxide from magnesium chloride using sodium hydroxide has been improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号