首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetragonal yttria-stabilized zirconia thin film was successfully fabricated by a pulsed laser deposition method. The thin film grew heteroepitaxially with the orientation relationship of ZrO2‖Al2O3. Energy dispersive X-ray spectroscopy mapping revealed that Y3+ ions were distributed homogeneously without local segregations. X-ray and electron-diffraction analysis confirmed a single crystalline structural feature of the film. On the other hand, high-resolution scanning transmission electron microscopy observations show that this film contains small-angle tilt grain boundaries, which is composed of the periodic array of dislocations with the Burgers vector .  相似文献   

2.
The dominant point defect mechanism of amorphous (a‐) indium zinc oxide (IZO) was probed through in situ electrical characterization of sputtered a‐IZO thin films in response to changes in oxygen partial pressure (pO) at 300C. The results yielded a power law dependence of conductivity (σ) versus pO of ~?1/6. This experimental method, known as Brouwer analysis, confirms doubly‐charged oxygen vacancies as the dominant defect species in a‐IZO. The success of this study suggests that Brouwer analysis is a viable method for studying the defect mechanisms of amorphous oxides.  相似文献   

3.
TEM and SEM investigations of ZnO bicrystal interfaces were undertaken with an aim to study the correlation of local grain-boundary structure, segregation, and electrical transport perpendicular to the interface. To this end, varistor-like ZnO bicrystals with piezotronic characteristics were chosen with (000)║(000) tail-to-tail orientation with respect to the c-axis. In order to contrast different local grain-boundary structures with different coherency and segregation of bismuth, but identical macroscopic polarization state, two complementary processing techniques were applied. A diffusion-bonded bicrystal with an intermediate thin film containing Zn–Bi–Co–O provided a straight interface as reference. In contrast, a ZnO bicrystal prepared by epitaxial solid-state transformation was manufactured by bonding two ZnO single crystals with a 100 µm thick polycrystalline ZnO varistor material with a typical dopant composition including bismuth and cobalt. This structure was annealed to the point that a bicrystal was formed with the varistor concentration at the boundary, which was strongly curved due to the polycrystalline microstructure still providing a shadow image at the interface. The results highlight a distinct correlation between local interfacial morphology, degree of segregation of bismuth, and degree of nonlinearity of the electrical transport across the interface.  相似文献   

4.
Combinatorial substrate epitaxy (CSE) was used to study the orientation relationships (ORs) and polytypic stability of AEMnO3 (AE = Ca, Sr) thin films grown on polycrystalline SrMnO3 and SrTiO3 substrates. SrMnO3 films with the stable four-layered hexagonal (4H) and metastable three-layered cubic (3C) structures were also grown on (111) and (100) SrTiO3 single crystal substrates, respectively. Electron backscatter diffraction data were used to determine the following ORs, which hold true regardless of the substrate surface orientation: , , and These are all simply the eutactic OR, which aligns the eutactic planes and directions; its ubiquity indicates that the interface energy is generally lower for the eutactic OR than for all other possible ORs. 3C SrMnO3 was found to grow only on very near (100) 3C SrTiO3 grains. This narrow range of epitaxial stabilization suggests that the penalties of higher interfacial and/or strain energies between polytypic perovskites adopting the eutactic OR are not significant enough to overcome the volumetric formation energy of the stable phase in these growth conditions, except for very special orientations.  相似文献   

5.
In this study, the yield stress and fracture strength of β $\ubeta$ -Si3N4 single crystals were directly measured by bending tests of microcantilever beam specimens that were prepared by a focused ion beam method. The β $\ubeta$ -Si3N4 single crystals were plastically deformed at room temperature under high bending stress, and the yield stress depended on the crystal orientation. Transmission electron microscopy observation of the specimens after bending tests indicates that the plastic deformation resulted from dislocations in the primary slip system { 10 1 ¯ 0 } $\{ 10\bar{1}0\} $ <0001>, and the critical resolved shear stress of this slip system determined from the yield stress was 1.34 GPa. The fracture strength of β $\ubeta$ -Si3N4 single crystals ranged approximately up to 20 GPa, depending on the crystal orientation as with the yield stress. The fracture behavior of β $\ubeta$ -Si3N4 single crystals was discussed in terms of the accumulation of dislocations.  相似文献   

6.
In the present study, the effects of the heterojunctions on the optical and structural characteristics and the resulting photocatalytic properties of multilayered ZnO-based thin films were investigated. The junctions were composed of semiconducting ZnO nano-porous films coated on the In2O3 and SnO2 counterpart layers. The multilayered ZnO films based on the triple-layered Ag-doped indium oxide (AIO)/tin oxide (TO)/zinc oxide (ZnO), indium oxide (IO)/Ag-doped tin oxide (ATO)/zinc oxide (ZnO), indium oxide (IO)/tin oxide (TO)/zinc oxide (ZnO) and tin oxide (TO)/indium oxide (IO)/zinc oxide (ZnO) have been fabricated by subsequent sol–gel dip coating. Their structural and optical properties combined with photocatalytic characteristics were examined toward degradation of Solantine Brown BRL (C.I. Direct Brown), an azo dye using in Iran textile industries as organic model under UV light irradiation. Effects of operational parameters such as initial concentration of azo dye, irradiation time, solution pH, absence and presence of Ag doping and consequent of sublayers on the photodegradation efficiencies of ZnO nultilayered thin films were also investigated and optimum conditions were established. It was found that the photocatalytic degradation of azo dye on the composite films followed pseudo-first order kinetics. Photocatalytic activity of AIO/TO/ZnO interface composite film was higher compared with other films and the following order was observed for films activities: AIO/TO/ZnO > IO/TO/ZnO > ATO/IO/ZnO > TO/IO/ZnO. Differences in the film efficiencies can be attributed to differences in crystallinity, interfacial lattice mismatch, and surface morphology. Besides, the presence of Ag doping between layers that may act as trap for electrons generated in the ZnO over layer thus preventing electron–hole recombination.  相似文献   

7.
We report the pulsed-laser deposition of epitaxial double-perovskite Bi2FeCrO6 (BFCO) films on the (001)-, (110), and (111)-oriented single-crystal SrTiO3 substrates. All of the BFCO films with various orientations show the and superlattice-diffraction peaks. The intensity ratios between the -superlattice and the main 111-diffraction peak can be tailored by simply adjusting the laser repetition rate and substrate temperature, reaching up to 4.4%. However, both optical absorption spectra and magnetic measurements evidence that the strong superlattice peaks are not correlated with the B-site Fe3+/Cr3+ cation ordering. Instead, the epitaxial (111)-oriented Bi2FeCrO6 films show an enhanced remanent polarization of 92 μC/cm2 at 10 K, much larger than the predicted values by density-functional theory calculations. Positive-up-negative-down (PUND) measurements with a time interval of 10 μs further support these observations. Therefore, our experimental results reveal that the strong superlattice peaks may come from A- or B-site cation shifts along the pseudo-cubic [111] direction, which further enhance the ferroelectric polarization of the BFCO thin films.  相似文献   

8.
Zinc oxide (ZnO) thin films were prepared under different conditions on glass substrates using a sol–gel process. The microstructure of ZnO films was investigated by means of diffraction analysis, and plan-view and cross-sectional scanning electron microscopy. It was found that the preparation conditions strongly affected the structure and the optoelectronic properties of the films. A structural evolution in morphology from spherical to columnar growth was observed. The crystallinity of the films was improved and columnar film growth became more dominant as the zinc concentration and the substrate withdrawal speed decreased. The individual layer thickness for layer-by-layer homoepitaxy growth that resulted in columnar grains was <20 nm. The grain columns are grown through the entire film with a nearly unchanged lateral dimension through the full film thickness. The columnar ZnO grains are c -axis oriented perpendicular to the interface and possess a polycrystalline structure. Optical transmittance up to 90% in the visible range and electrical resistivity as low as 6.8 × 10−3·Ω·cm were obtained under optimal deposition conditions.  相似文献   

9.
The development of a gas sensor for ppb-level detection has been required for the industrial and medical fields. Exposed facet control is an effective way to improve gas sensing performance without novel metal catalysts. Herein, we investigated the change in gas sensitivity of ZnO nanostructures depending on the exposed surface. ZnO-rod and ZnO-whisker were synthesized using zinc nitrate hexahydrate, hexamethylenetetramine, and polyethyleneimine (PEI) via a low-temperature aqueous solution process. As increasing the amount of PEI, the ZnO-rod with (0001) facet was converted to the ZnO-whisker with (101) facet by edge sharpening. Although both samples can detect acetone gas until 200 ppb, the ZnO-whisker exhibited superior sensing performance in all ranges. Especially, the gas response of ZnO-whisker was three times higher than that of ZnO-rod at 5 ppm. The result was related to the difference in oxygen vacancy site where generate pre-adsorbed oxygen species. In the analysis results of electron density distribution, two Zn atoms are associated with one oxygen vacancy site in (101) facet. On the other hand, one oxygen vacancy site was connected to only one Zn atom in the (0001) plane. Thus, electrons could be much easily provided to the oxygen vacancy site in (101) facet, and it causes the higher sensitivity of ZnO-whisker.  相似文献   

10.
Coupon specimens of poled and depoled lead zirconate titanate (PZT) are examined under combined stress wave and electric loading conditions. Mode-I crack initiation and fracture behavior is examined using ultrahigh-speed imaging and two-dimensional digital image correlation. The dynamic critical stress intensity factor () is extracted using measured displacement fields ahead of the impulsively loaded crack tip, and compared between poled and depoled plates that were either under no electric field, positive 0.46 kV/mm electric field, or negative 0.46 kV/mm electric field. Poled specimens had a poling direction and applied electric field direction normal to the crack front. The addition of an electric field resulted in a crack-enhancing effect, where the dynamic fracture toughness of poled specimens under 0.46 kV/mm was almost half that of samples with no electric field. Depoled samples experienced almost no change in dynamic fracture toughness with the addition of an electric field.  相似文献   

11.
Silver doped zinc oxide (Ag–ZnO) thin films were deposited on glass and tin doped indium oxide (ITO) coated glass substrates by using pneumatic spray pyrolysis technique (SPT) at 450 °C from aqueous solutions of zinc acetate and silver nitrate precursors. The effect of silver doping on structural, morphological and optical properties of films was studied. The XRD spectra of the Ag–ZnO films indicate the polycrystalline nature having hexagonal crystal structure. SEM micrographs show the uniform distribution of spherical grains of about 80–90 nm grain size for the pure ZnO thin films. The Ag nanoparticles are clearly visualized in SEM images of Ag–ZnO samples. The optical band gap energy decreases as the percentage of silver doping increases. Surface Plasmon Resonance (SPR) related phenomena are observed and correlated to the optical properties of Ag–ZnO thin films. The overall photoelectrochemical (PEC) performance of the samples was investigated and discussed. Moreover, the samples are more photoactive as compare to the pure ZnO sample and the sample ZnOAg15 shows the highest current. The photocurrent increases upto 249 μA cm−2 and 303 μA cm−2 in visible light and in UV illumination, respectively, and then decreases as the Ag doping increases into the film.  相似文献   

12.
The one-dimensional radial vibration model of piezoelectric disks has been widely used to determine the relevant material coefficients from admittance measurements. However, the one-dimensional model assumes infinitely thin disks, and therefore cannot predict their axial displacements. We extend the one-dimensional model by performing an asymptotic analysis of the axisymmetric radial vibration of thin disks. The asymptotic expansions include the asymptotic axial displacement and the second-order corrections to the admittance and the radial displacement in the one-dimensional model. We verify the asymptotic expansions and the one-dimensional model with the Chebyshev tau method. In the one-dimensional model, the frequencies of the maximum admittance in the first and second radial modes are accurate to 1% for Pz27 disks with thickness-to-diameter ratios of 0.15 and 0.065, respectively. For a general piezoelectric disk in the forced vibration, the error of in the one-dimensional model can be estimated from the second-order correction of the asymptotic resonance frequency in the free vibration.  相似文献   

13.
In this work, the influence of the sintering temperature on the physical properties of (Pb0.8La0.2)(Ti0.9Ni0.1)O3 (PLT-Ni) ceramics is reported. The experimental data revealed that the energy band gap of PLT-Ni ceramics could be tailored from approximately 2.7 to 2.0 eV by changing the sintering temperature from 1100°C to 1250°C. It is demonstrated that the simple substitution of Ti4+ by Ni2+ cations is effective to decrease the intrinsic band gap while increasing the tetragonality factor and the spontaneous polarization. However, the additional red-shift observed in the absorption edge of the PLT-Ni with increasing the sintering temperature was associated with a continuous increase in the oxygen vacancies () amount. It is believed that the impact of the creation of these thermally induced is manifold. The presence of and Ni2+ ions generate the Ni2+- defect-pairs that promoted both a decrease in the intrinsic band gap and an additional increase of the tetragonality factor, consequently, increasing the spontaneous polarization. The creation of Ni2+- defects also changed the local symmetry of Ni2+ ions from octahedral to a square pyramid, thus lifting the degeneracy of the Ni2+ 3d orbitals. With the increase in the sintering temperature, lower-energy absorbing intraband states were also formed due to an excess of , being responsible for an add-on shoulder in the absorption edge, extending the light absorption curve to longer wavelengths and leading to an additional absorption in “all investigated” spectrum as well.  相似文献   

14.
When incorporating actinides into zirconolite for high-level radioactive waste immobilization, Al3+ and Fe3+ ions generally act as charge compensators. In this study, we rationally designed a series of (Ln = La, Nd, Gd, Ho, Yb) to unravel the dopant solubility and evolutions of the crystalline phase and local environment of cations through synchrotron X-ray methods. It was found that single zirconolite phase is difficult to obtain and the fraction of perovskite have an increase with x from 0.1 to 0.9 in . Formation of both zirconolite-2M and zirconolite-3O phases was observed in and . Phase transformation from zirconolite-2M to 3O occurs at x = 0.7 for while x = 0.9 for . The solubility of and to form single zirconolite-2M can reach to 0.9 f.u. and 0.7 f.u., respectively. The evolution of lattice parameters of zirconolite in is greatly related to the ionic radii of cations and substitution mechanism among the cations. X-ray absorption near edge spectroscopy revealed that Fe3+ ions replace both five- and six-coordinated Ti sites and the ratio of TiO5 to TiO6 decreases when increasing dopant concentration in the . For the local environment of Zr4+, the major form is ZrO7 with a trace of ZrO8.  相似文献   

15.
Antiferroelectric (AFE) ceramics are promising for applications in high-power density capacitors, transducers, etc. The forward switching field and backward switching field are critical performance indicators for AFE ceramics, and the coupling between the structure transition and domain orientation makes them different from the coercive field of ferroelectric (FE). Moreover, in practical applications, AFE ceramics are often required to operate at varying frequencies. However, systematic studies regarding the frequency dependence of and are insufficient. In this work, (PLZST) AFE ceramic was fabricated, and two empirical formulas (, ) were proposed to predict the frequency dependence of and . The formulas are based on the electric field–induced phase transition characteristics of AFE and the Kolmogorov–Avrami–Ishibashi domain nucleation-switching model. Furthermore, the dynamic hysteresis loops of PLZST at various frequencies (1–1000 Hz) and temperatures (–) were investigated. The results show that the electric field–induced phase transition of AFE ceramic is dominated by the coupling between the structural transition and domain orientation. The domain orientation hinders the structure transition, leading to an increase in and a decrease in as the frequency of applied electric field increases. Meanwhile, the domain growth process is affected by the structure of AFE, and the value of (domain growth dimensionality) increases with the stability of the AFE structure. For comparison, (PLBZST) relaxor FE ceramic was fabricated. Due to the high mobility of the microdomain, the dynamic hysteresis loop of PLBZST ceramic exhibits excellent frequency stability. The charge–discharge experiment with an ultrahigh equivalent frequency (100 kHz) was performed to investigate the frequency stability of energy release of PLZST and PLBZST. The results may provide guidance for research pertaining to ceramic capacitors with high-power density and high-frequency stability.  相似文献   

16.
17.
This paper reports on the phase formation of perovskite Pb(In1/2Nb1/2)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3 (PIN-PZN-PT) powder when doped with 0.04 to 0.83 mol% ZnO. Air calcination of undoped powder mixtures for 4 hours at 800°C resulted in a mixture of Pb2Zn0.29Nb1.71O6.565 pyrochlore, PIN-PZN-PT perovskite, and In2O3. ZnO dopant concentrations as low as 0.04 mol% increased the rate of perovskite formation and resulted in near phase pure perovskite powder of 0.5 μm particle size when heated at 800°C in air. In all cases PbTiO3 and Pb(In1/2Nb1/2)O3 formed prior to PIN-PZN-PT formation. ZnO doping promotes perovskite phase formation by increasing the reactivity of the intermediate pyrochlore phase by substituting Zn2+ on Nb5+ sites and forming oxygen vacancies when heated in air. Heating in high resulted in an incomplete reaction and a mixture of perovskite and pyrochlore whereas low resulted in phase separation into a mixture of rhombohedral perovskite, tetragonal perovskite, and pyrochlore. The sensitivity clearly shows that oxygen vacancies due to ZnO-doping are critical for synthesis of phase pure PIN-PZN-PT powder.  相似文献   

18.
The temperature dependences of the electrical conductivity , Seebeck coefficient , and heat capacity Cp(T) of polycrystalline samples of Bi2Te3, Bi2Te3+1%CuI, and Bi2Te3+1%(CuI+1/2Pb) are investigated in the temperature range below room temperature. Based on the temperature dependences of all investigated physical properties, it is discovered that phase transition occurs at 120–200 K. Investigation of single crystals shows that anomalies in the electrical resistivity occur only across the crystal growth axis (across the well-conducting Bi–Te plane). Investigation of the low-temperature dependence of electrical conductivity shows that all polycrystalline samples exhibit quasi-two-dimensional electron transport. Additionally, quasi-two-dimensional transport is detected in single crystals based on anisotropy analysis (where is the resistivity along the crystal growth axis, and is resistivity across the crystal growth axis) and temperature dependence below 50 K. The Fermi energy is estimated using the temperature dependence of . It is discovered that an increase in at T > 200 K is associated with the phase transition. For single-crystal samples, the maximum thermoelectric figure of merit ZT, as observed along the crystal growth axis, increases with doping. A maximum ZT value of ∼1.1 is observed for the Bi2Te3+1%(CuI+1/2Pb) sample at room temperature ().  相似文献   

19.
In this study, hot-compression is applied to two multicomponent borosilicate glasses, Borofloat33 (Boro33) and N-BK7, using molecular dynamics simulations. The effects of pressure on elastic properties, surface energy, and fracture toughness ( are investigated. It is found that the impact on is mainly dominated by the change of Young's modulus under pressure, which is proportional to the relative change in density. Between the two glasses under investigation, can be improved more effectively by the hot-compression process for Boro33, due to its higher concentration of 3-coordinated boron (B3), which facilitates densification via B3 to B4 conversion under compression.  相似文献   

20.
To understand the role of phosphate ester dispersant, we investigated the rheology of a BaTiO slurry. For the model case, a coarse-grain molecular dynamics (CGMD) simulation was performed with the butyral polymer didodecyl hydrogen phosphate (DHP) in the toluene/ethanol solvent. By systematically analyzing the effect of DHP from an atomic-scale first principle and from all-atom MD to microscale CGMD simulation, we investigated how the adsorption of a DHP dispersant on a BaTiO surface affects the microstructure rheology of a BaTiO slurry. The first-principle and all-atom MD simulation suggests that DHP molecules prefer to locate near the BaTiO surface. CGMD simulation shows a reduction in viscosity with an increase in dispersants, suggesting that the dispersant population near the BaTiO surface plays a key role in controlling the rheology of the BaTiO slurry. In this study, we propose an approach for understanding the BaTiO slurry with molecular-level simulations, which would be a useful tool for efficient optimization of slurry preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号