首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
电镀废水是一种典型的难降解废水,可生化性差,需采用物化法进行处理。取混凝沉淀后的废水进行研究,采用铁炭微电解-Fenton法进行处理。结果表明:混凝沉淀预处理电镀废水后,采用该组合工艺,能很好地降低废水中难降解有机物的浓度及除色度。铁炭微电解反应的最佳pH值为3~4,最佳停留时间为60~90min。Fenton反应的初始pH值为3~4较合适;反应时间为60min时,COD的去除率接近最大值;H2O2的最佳投加量为10%。  相似文献   

2.
采用混凝沉淀、铁碳微电解、芬顿氧化3种方法对高浓度制药废水进行降解实验研究,考察了单独方法和组合方法的实际降解效果,并寻找最佳处理效果的组合工艺。结果表明:高浓度抗生素废水,具降难解性,使用单一的物化处理法,去除效果均不佳,最大去除率为21.4%;采用两种组合处理工艺时,去除率最高提高13.9%;铁碳微电解反应结束后调节pH,COD的去除率更高。当原水COD为55 600 mg/L,经过混凝沉淀-铁碳微电解(调pH)-芬顿反应后,COD的去除率接近60%,该组合工艺具有去除率高,反应时间短的特点。  相似文献   

3.
采用混凝沉淀-微电解组合工艺预处理再生造纸废水。通过实验,考察了混凝单元药剂选择、药剂投量以及沉淀时间、微电解单元的初始pH、铁炭用量、铁炭比、反应时间以及出水pH对预处理效果的影响,确定了该工艺的最佳条件。结果表明,选择氢氧化钙为混凝剂,用量为4 g/L,沉淀时间为40 min,微电解的初始pH为3.0,铁炭总量为20g/L,铁炭比为3:1,反应时间为40 min,出水pH为8.0时再生造纸废水的COD、氨氮、总磷、SS和BOD5的去除率分别达到52.88%、43.08%、93.61%、91.64%和33.19%。同时可生化性由0.32提高到0.46,减小了后续生化处理工艺负荷。  相似文献   

4.
采用微电解+硫酸铝混凝组合工艺对麦草制浆造纸废水进行处理,采用正交实验考察微电解法工艺参数:pH、铁屑用量、活性炭用量和磁力搅拌时间对COD_(Cr)去除率和脱色率的影响。结果表明,铁/碳微电解+硫酸铝组合工艺的优化工艺参数为:废水pH值为6.0,反应时间90 min,铁屑用量为30 g/L,活性炭用量6 g/L,其COD_(Cr)去除率80%,脱色率90.5%。Fe/C微电解和硫酸铝组合对脱色效果大大提高,由于其絮凝作用的重合,对COD去除率效果并未大幅提高。  相似文献   

5.
采用微电解+硫酸铝混凝组合工艺对麦草制浆造纸废水进行处理,采用正交实验考察微电解法工艺参数:pH、铁屑用量、活性炭用量和磁力搅拌时间对COD_(Cr)去除率和脱色率的影响。结果表明,铁/碳微电解+硫酸铝组合工艺的优化工艺参数为:废水pH值为6.0,反应时间90 min,铁屑用量为30 g/L,活性炭用量6 g/L,其COD_(Cr)去除率80%,脱色率90.5%。Fe/C微电解和硫酸铝组合对脱色效果大大提高,由于其絮凝作用的重合,对COD去除率效果并未大幅提高。  相似文献   

6.
卢科峰  李艳 《过滤与分离》2009,19(4):20-21,43
研究了微电解+混凝工艺对染料工业废水预处理效果,在提高染料废水可生化的同时实现对COD和色度的去除,确定了工艺的最佳条件。结果表明:当pH=3,Fe/C体积比为1:1,停留时间70min;混凝单元投药量0.04L,pH=7的条件下,可使废水的BOD5/COD由0.20提高到0.39,COD去除率达62.9%以上。微电解+混凝工艺能够有效去除COD,改善染料废水的可生化性。  相似文献   

7.
程高峰  江成  方立才 《广州化工》2012,40(15):179-181
采用铁炭微电解+Fenton氧化+混凝沉淀的组合工艺对吡唑酮母液废水进行预处理试验,探讨各反应条件和工艺参数对COD去除效果的影响。结果表明:组合工艺对COD的总去除率为48.70%。可大幅减轻后续生化处理负荷,为系统的稳定运行创造条件。  相似文献   

8.
采用Na_2S 沉淀与混凝沉淀组合工艺处理电镀废水中的Cu~(2+)与COD,并研究了各工艺条件对电镀废水处理效果的影响。Na_2S 沉淀工艺的最佳条件为:Na_2S 的投加量100mg/L,初始pH值7.5,反应时间15min。混凝沉淀工艺的最佳条件为:混凝pH值7.5,混凝剂PAC的投加量8.0mg/L,助凝剂PAM的投加量8.0mg/L,混凝时间6min,沉降时间60min。在最佳处理工艺条件下,出水中Cu~(2+)的质量浓度为0.43mg/L,COD的质量浓度为41.27mg/L,能够达到电镀废水排放标准。  相似文献   

9.
采用微电解工艺及微电解-Fenton工艺处理对氨基苯酚废水。结果表明,处理200 mL浓度为0.5 g/L对氨基苯酚废水,单独微电解工艺,在pH为3,废铁屑投加量50 g/L,铁炭质量比为20∶1,反应60 min, COD和色度去除率分别为40.25%和42.28%。微电解-Fenton联用,在pH为3,铁炭质量比为20∶1,双氧水投加量30 mL/L,反应60 min, COD和色度去除率分别达到93.72%和95.7%。  相似文献   

10.
铁炭微电解/Fenton氧化预处理高浓度煤化工废水的研究   总被引:3,自引:1,他引:2  
采用铁炭微电解/Fenton氧化组合工艺预处理高浓度煤化工废水,研究了工艺条件对COD去除率的影响。结果表明,铁炭床微电解的最佳运行条件为:进水pH=2,反应时间为20 min;Fenton氧化的最佳条件为:进水pH=4,30%H2O2投加量为3 mL/L,反应时间为60 min。在此运行条件下,COD总去除率可以达到60%~70%,其中微电解反应床COD去除率为40%~47%。采用该工艺预处理高浓度煤化工废水,降低了后续生物处理的负荷,同时不会引起铁炭床的钝化和板结。  相似文献   

11.
以DSA电极为阳极、钛电极为阴极构成电解池,对抗生素废水进行了催化氧化处理。单因素实验结果表明,当槽电压7.0 V、极板间距1 cm、初始pH=5、进水初始COD 3 000 mg/L、Na Cl投加质量浓度3.0 g、电解时间30 min时,COD去除率可达到49.66%,色度去除率达85.01%。正交试验分析,当槽电压7.0 V、电解时间60 min、初始pH=5、Na Cl投加质量浓度2.5 g/L时,其电解效果最佳,可为该制药废水生化性调节起到良好的作用。  相似文献   

12.
焦化废水成分复杂、毒性大、色度高,是目前难以处理的工业废水之一。通过试验考察了一种新型强化铁盐混凝剂对华东某焦化废水生化出水的处理效果,并与传统聚合硫酸铁进行了比较。结果表明,新型强化铁盐混凝剂对焦化废水生化出水的处理效果优于传统聚合硫酸铁,当其投加量为2 000 mg/L,初始p H为7~8,快速搅拌时间为20 min时,COD、色度去除率分别达到76%和85%,出水COD、色度达到国家排放标准的要求。  相似文献   

13.
铁碳微电解法处理染料生产废水   总被引:17,自引:0,他引:17  
本文以实际生产废水为研究对象,用铁碳微电解法处理高COD、高色度和高含盐染料生产废水;考察了原水pH、色度和COD浓度、传质条件对色度和COD去除效果的影响;比较了微电解法与絮凝法的去除效果,进行了对处理液可见一紫外吸收光谱的分析,探索了微电解法处理染料废水的机理。实验结果表明,微电解法对染料废水有明显的去除效果,进水pH为1左右、接触时间为0.5h时,COD的去除率在60%左右,色度去除率大于94%;微电解法主要通过氧化还原作用和铁的絮凝作用去除COD和色度。  相似文献   

14.
铁炭微电解-Fenton试剂预处理纤维素发酵废水   总被引:7,自引:0,他引:7  
采用铁炭微电解-Fenton试剂对高化学需氧量、高色度及高盐度的纤维素发酵废水进行了预处理研究。研究表明,铁炭微电解的最佳工艺条件为pH值为4~5,铁屑用量150 g/L,铁炭质量比为1∶2,反应时间1 h,曝气量30 mL/min;Fenton反应最佳条件为:pH值为5,H2O2投加量为4.5 mL/L,反应时间60 min,在此反应条件下,废水COD总去除率接近40%,色度去除率达81%,有效地去除了废水中影响乙醇发酵的4种抑制剂,改善了后续生化处理条件,提高了废水的可生化性。  相似文献   

15.
探讨了采用铁炭微电解-Fenton氧化-絮凝技术对高浓度有机废液进行预处理。结果表明,铁炭微电解反应条件为:进水pH为4,反应时间60 min,铁炭体积比为2:1,反应2次;Fenton氧化反应条件为:初始pH为4,投加占废液体积4%的质量分数30%的H2O2,反应时间60 min;絮凝沉淀反应条件为:初始pH为7,投加PAM 5 mg/L,PAC 300 mg/L。实验室优化工艺条件下COD总去除率达到93.3%,B/C由0.052提高至0.346,提高了废液的可生化性。经预处理后,可以进入企业污水处理站后续处理,达标排放。本方法能够将作为危险固废的高浓度有机废液转变为一般有机废水,以降低处理成本。  相似文献   

16.
《云南化工》2019,(9):57-58
以垃圾中转站渗滤液为研究对象,分析了混凝-臭氧氧化工艺对渗滤液COD和色度的影响。结果表明:在pH=11.2,FeCl_3加量为900 mg/L,臭氧反应时间为20 min,臭氧流量为35 mg/L的优化条件下,垃圾中转站渗滤液的COD、色度分别可去除78.39%与95.34,BOD5/COD由反应之前的0.152提升到了0.415,可生化性明显改善。  相似文献   

17.
贾艳萍  张真  佟泽为  王嵬  张兰河 《化工学报》2020,71(4):1791-1801
针对印染废水色度高、成分复杂、难降解等问题,利用铁碳微电解工艺处理该废水,提高其可生化性和处理效率。考察初始pH、铁投加量、铁/碳质量比及反应时间对工艺的影响,通过扫描电子显微镜(SEM)、红外光谱、X射线能谱(EDS)及X射线衍射(XRD)分析反应前后铁碳结构的变化,采用Zeta电位和紫外可见光谱等对比废水处理前后有机物成分的变化,探究印染废水的降解机理。结果表明:在初始pH为4、铁投加量为80 g/L、铁/碳质量比为0.8及反应时间为90 min时,COD、浊度、色度、氨氮和TOC去除率分别为75.48%、87.88%、75.34%、92.01%和81.09%。反应前铁碳反应器的成分以Fe、C为主,活性炭的孔隙结构发达,反应后铁碳表面附着Al、K等其他金属物质和铁的氢氧化物絮体。铁碳微电解工艺可降解酯、醇类有机物为小分子物质,提高废水可生化性。  相似文献   

18.
吕春芳  王婕  高盼盼 《应用化工》2013,(12):2142-2144
采用A/O工艺处理印染废水,重点探讨了二沉池污泥回流比为50%和80%对废水水质的影响,以COD去除率,pH的变化,色度的去除率为指标。结果表明,采用此工艺处理废水使COD、色度、pH均有明显降低。其中COD至少降低60%,在一定条件下可达到85%左右,且回流比为80%对COD的降解及色度的去除均优于回流比50%;而回流比80%与回流比50%对pH的影响无明显差异。  相似文献   

19.
采用Fe/C微电解和Fe/C微电解-Fenton氧化联合工艺对垃圾渗滤液进行处理,研究了废水初始pH、药剂投加量、药剂投加比例和反应时间等对处理效果的影响,获得Fe/C微电解处理垃圾渗滤液的最佳工艺条件:初始pH=3、m(Fe)/m(C)为4、ρ(Fe/C)为0.6 g/L、反应时间为60 min,处理后COD降至5 960 mg/L,COD去除率达51.8%。Fe/C微电解-Fenton氧化处理垃圾渗滤液的最佳工艺条件:在Fe/C微电解最佳条件下,H2 O2投加量为11 mL/L,反应时间为100 min,出水COD为4 480 mg/L,COD总去除率为63.8%。垃圾渗滤液中的腐殖酸类有机质经过Fe/C微电解或微电解-Fenton氧化处理后变成小分子产物,与Fe/C微电解相比,Fenton氧化对腐殖酸等大分子有机质有更强的氧化降解效果。  相似文献   

20.
提铜选矿药剂生产废水回用处理工艺研究   总被引:1,自引:0,他引:1  
采用隔油-过滤除油-酸化沉降-催化氧化-石灰中和-3级活性炭吸附联合工艺处理提铜药剂生产废水。研究了酸化沉降pH值优化、过滤除油及催化氧化单元处理的效果、废水净化-回用在生产工艺中循环的可行性,以及活性炭、锅炉炉渣的饱和吸附容量和活性炭再生方法结果表明,酸化pH值为3~4时,对废水具有较好的澄清效果;组合过滤除油单元的联合工艺处理出水COD进一步降低;而组合催化氧化单元的联合工艺,出水COD、色度反而有所上升;活性炭和炉渣的饱和吸附容量分别为119、23mL/g,前者对废水的脱色、除味和COD去除效果明显优于后者;对于饱和活性炭,宜采用中温炭化-高温蒸汽活化方式进行再生。推荐采用集水调节-酸化沉降-隔油-过滤除油-石灰中和-1级炉渣吸附-3级活性炭吸附联合工艺净化提铜选矿药剂生产废水,处理出水可回用生产,实现生产废水"零排放"。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号