首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2015,41(4):5857-5862
Microporous corundum aggregates were fabricated based on superplasticity, with α-Al2O3 micropowder as the main raw material, by adding nano-sized alumina sol and MgO micropowder. The relationship between the superplasticity and the in-situ stress during sintering, the corresponding sintering properties, and the microstructures of the fabricated microporous corundum aggregates were investigated by means of X-ray diffraction (XRD), mercury porosimetry, and scanning electron microscopy (SEM). The experimental results show that the relationship between the superplasticity and the in-situ stress is the main factor that influences the sintering behavior of the microporous corundum aggregates. Various amounts of MgO micropowder were added to the α-Al2O3 micropowder for a fixed content of nano-sized alumina sol. With increasing MgO micropowder, which results in a greater in-situ stress, the total and closed porosity increased initially and decreased afterwards whereas the apparent porosity and bulk density decreased first and then increased. Microporous corundum aggregates with high closed porosity, low apparent porosity and small pore size were obtained with the addition of 1 wt% MgO micropowder. Therefore, the relationship between the superplasticity and the in-situ stress should be controlled in order to fabricate microporous refractory aggregates which have high closed porosity and small pore size.  相似文献   

2.
Five microporous mullite-corundum refractory aggregates were prepared from Al(OH)3 and kaolinite gangue through in situ decomposition synthesis technique. The effects of the sintering temperature (1400–1600°C) and the particle sizes of raw materials (20.6–94.5 μm) on the microstructures and strengths of the aggregates were investigated through X-ray diffractometer, scanning electron microscopy, and energy-dispersive spectrometer etc., to find out the technological conditions to be controlled in industrial production. The higher sintering temperature promoted the reaction between Al(OH)3 and kaolinite gangue, leading to the development of primary-mullite as well as the generation of secondary-mullite, which promoted the formation of the neck and improved the strength. Meanwhile, the dense mullite layers were formed continuously on the surface of Al(OH)3 pseudomorphs, making the micropores inside the pseudomorphs become closed pores, which increased the closed porosity of the aggregates. The reduction of the particle sizes of raw materials changed the particle packing behavior, accelerated the rearrangement of the Al(OH)3 pseudomorph particles during the process of reactive sintering, and then reduced the closed porosity. To realize the industrial production of microporous mullite-corundum refractory aggregate with high strength (103 MPa) and high closed porosity (16.1%), the sintering temperature should be at about 1600°C, and the median diameter of raw materials should be at 94.5 μm.  相似文献   

3.
《Ceramics International》2022,48(22):33160-33166
As a lightweight refractory, porous Al2O3 ceramics are advocated in the iron and steel smelting industry because of their excellent resource-saving and low heat loss. However, the severely poor slag corrosion resistance and low mechanical strength caused by open pores shorten their service life. To solve this problem, Al2O3 ceramics with excellent closed-cell structure were fabricated by combining β-SiC pore-foaming and gel-casting techniques, and their pore structure and properties were tailored by tuning the content of β-SiC and sintering temperature. It is noted that the closed pores introduced in the dense Al2O3 matrix play a pivotal role in improving the corrosion resistance and mechanical strength while maintaining the lightweight. And the sample with closed porosity of 20.6% exhibited compressive strength of 640 MPa and flexural strength of 272 MPa. Meanwhile, its corrosion and penetration indices were at a low level, 6.3% and 54.8%, respectively.  相似文献   

4.
《Ceramics International》2022,48(13):18294-18301
Si3N4 ceramics were prepared using novel two-step sintering method by mixing α-Si3N4 as raw material with nanoscale Y2O3–MgO via Y(NO3)3 and Mg(NO3)2 solutions. Si3N4 composite powders with in situ uniformly distributed Y2O3–MgO were obtained through solid–liquid (SL) mixing route. Two-step sintering method consisted of pre-deoxidization at low temperature via volatilization of in situ-formed MgSiO3 and densification at high temperature. Variations in O, Y, and Mg contents in Si3N4–Y2O3–MgO during first sintering step are discussed. O and Mg contents decreased with increasing temperature because SiO2 on Si3N4 surface reacted with MgO to form low-melting-point MgSiO3 compound, which is prone to volatilize at high temperature. By contrast, Y content hardly changed due to high-temperature stability of Y–Si–O–N quaternary compound. In the second sintering step, skeleton body was densified, and the formation of Y2Si3O3N4 secondary phase occurred simultaneously. Two-step sintered Si3N4 ceramics had lower total oxygen content (1.85 wt%) than one-step sintered Si3N4 ceramics (2.51 wt%). Therefore, flexural strength (812 MPa), thermal conductivity (92.1 W/m·K), and fracture toughness (7.6 MPa?m1/2) of Si3N4 ceramics prepared via two-step sintering increased by 28.7%, 16.9%, and 31.6%, respectively, compared with those of one-step sintered Si3N4 ceramics.  相似文献   

5.
Six microporous MgO-Al2O3 refractory aggregates were prepared with Al(OH)3 and two different types of magnesite powders via an in-situ decomposition pore-forming technique. One magnesite powder contained more CaO (Magnesite C), the other one contained more SiO2 and Al2O3 impurities (Magnesite SA). Effects of magnesite powder type and content (11 wt.%, 36 wt.% and 77 wt.%) on the phase compositions, microstructures and mechanical strengths of the prepared microporous aggregates were investigated by X-ray diffractometry (XRD), mercury porosimetry measurements, and scanning electron microscopy (SEM), etc. With the addition of 11 wt.% and 77 wt.% magnesite, the type of magnesite had only a small effect on the microporous corundum-spinel and periclase-spinel aggregates, while great influence on the microporous spinel aggregates was observed with 36 wt.% addition. This was mainly because of the sintering process with liquid phase. The best microporous MgO-Al2O3 refractory aggregates, which had an apparent porosity of 39.1%, a median pore size of 3.38 μm and a compressive strength of 66.3 MPa, were prepared by using 36 wt.% Magnesite C. This work has practical significance for the efficient utilization of magnesite and the development of energy-saving lightweight MgO-Al2O3 refractories.  相似文献   

6.
《Ceramics International》2016,42(16):18560-18567
For lightweight refractory containing lightweight aggregates, the properties of the matrix are decisive to its performance. In the present work, Dinger–Funk equation was adopted to calculate the theoretical packing density of a castables matrix based on Stovall linear packing model and to design its particle size distribution. Four lightweight Al2O3-MgO castables with different particle size distribution (represented by q-value) were prepared and examined. Results show that a suitable q-value was needed to ensure acceptable properties including sintering characteristics, strength and slag resistance, which deteriorated distinctly at high q (>=0.31). For the sample with q=0.28, the matrix showed dense and uniform mirostructure, and the properties of castable reached a favourable compromise among sintering characteristics (apparent porosity=14.8%, bulk density=3.02 g cm−3, permanent linear change<0.6%), strength (cold modulus of rapture=12.4 MPa, cold crashing strength=155.5 MPa), and resistance against both slag corrosion (Ic=22.4%) and penetration (Ip=11.5%). The sample with q=0.25 showed the highest strength and resistance against slag corrosion (matrix dissolved in slag), but its slag penetration resistance was lower due to the existence of cracks between aggregates and matrix.  相似文献   

7.
Porous Pb (Zr0.95Ti0.05) O3/xMgO (PZT/MgO, x=0, 0.1, 0.2, 0.5 and 1.0 wt%) ferroelectric ceramics were prepared with MgO nanoparticles as reinforcing phase. The effects of MgO nanoparticles on the phase, microstructure, electrical and mechanical properties of as-prepared ceramics were investigated. The results show that the grain size is reduced obviously when increasing the amount of MgO. Compared with pure porous PZT, TC of MgO-added PZT ceramics shifts to higher temperature. Moreover, dielectric, ferroelectric and piezoelectric properties show no much degradation. Further, PZT/MgO ceramics possess enhanced mechanical properties compared to pure porous PZT ceramics, the largest increment of the fracture toughness and hardness being 31.3% and 19.8%, respectively. The optimal electrical and mechanical properties are obtained with the addition of less than 0.5 wt% MgO nanoparticles.  相似文献   

8.
MgO-MgFe2O4 refractory aggregates with high closed porosity were fabricated using MgO agglomerates and Mg(OH)2 with introducing Fe2O3 additive. The evolutions of pores and microstructure and their relationship with the properties of the specimens were studied. The addition of Fe2O3 obviously promoted the MgO grain growth and conversion of large open pores into small closed pores, attributing to the formation of cationic vacancies and intergranular MgFe2O4 bonding phase. Owing to the presence of closed pores and networks of intergranular MgFe2O4, both thermal insulation and strength were enhanced significantly. Besides, the formed closed pores and MgFe2O4 phase could accommodate thermal stress and induce transgranular fracture and crack deflection, therefore effectively improving the thermal shock resistance. The specimen with 15 wt% Fe2O3 showed a apparent/closed porosity of 0.7%/10.1%, median pore diameter of 4.37 µm, thermal conductivity of 9.3 W/(m·K) (500 °C), flexural strength of 143.5 MPa, and residual flexural strength of 24.1 MPa after thermal shock.  相似文献   

9.
《Ceramics International》2021,47(19):26643-26650
In order to improve the thermal shock resistance of MgO-based ceramics, aluminum titanate (Al2TiO5)-toughened MgO-based ceramics were successfully prepared by solid state sintering at 1450 °C and 1550 °C for 3 h starting from MgO and as-synthesized Al2TiO5 powders. The effects of various contents of Al2TiO5 second phase on the sintering behavior and thermal shock resistance of MgO-based ceramics were investigated. The sintering behavior of sintered samples was evaluated by comparing the relative density, apparent porosity, bending strength, phase composition as well as microstructure. The thermal shock resistance of sintered samples was characterized by using the residual bending strength after three thermal cycles and thermal expansion coefficient. The obtained samples with 10 wt% Al2TiO5, which were sintered at 1550 °C for 3 h, showed the highest relative density, lowest apparent porosity as well as optimum bending strength. In addition, the samples added 15 wt% Al2TiO5 at 1550 °C with a dwell time of 3 h were the highest residual bending strength and lowest thermal expansion coefficient. It revealed that the enhancement in thermal shock resistance was ascribed to the reduction of thermal expansion coefficient.  相似文献   

10.
A novel Al_2O_3-based refractory aggregate with closed-pore structure was fabricated utilizing superplasticity with submicro-sized Al_2O_3 and MgO as raw materials,and SiC as a high temperature pore-forming agent.The effect of MgO on porosity,phase composition and microstructure of the refractory aggregate has been investigated. For comparison,the common Al_2O_3-based refractory aggregates and porous ones with open-pore structure were also prepared. The results indicate that the closed porosity of Al_2O_3-based refractory aggregate increases as the content of MgO increases. When the content of MgO is 15 mass%,the closed and apparent porosities are 14. 5% and 1. 1%,respectively. The main phase compositions are Al_2O_3 and MgAl_2O_4. The formation mechanism of closed pores is that the fine-crystallinegrain Al_2O_3 ceramic possesses superplastic deformation ability after adding MgO at high temperatures. When SiC powder is added to the Al_2O_3 ceramic,the generated gases by the reaction of SiC at the sintering temperature can provide a pressure to make grain boundaries slide. Then,the gases are enclosed by crystalline grains to form the closed pores. The slag corrosion resistance of the fabricated closed-pore Al_2O_3-based refractory aggregate is better than the common refractory aggregate and porous ones.  相似文献   

11.
A low sintering temperature is demonstrated for (Ba0.85Ca0.15)1?xLix(Ti0.90Zr0.10)1?xNbxO3 (BCLTZN-x) piezoelectric ceramics, where BCLTZN-x lead-free piezoelectric ceramics were prepared by the normal sintering. Effects of Li and Nb on the microstructure and electrical properties of these ceramics were investigated. The sintering temperature of BCLTZN-x ceramics was decreased greatly by introducing Li and Nb, and the grain size of these ceramics decreases with increasing x. These ceramics with a small amount of Li and Nb maintain good piezoelectric properties, together with a low sintering temperature and a lower dielectric loss. These ceramics with x = 0.01 demonstrate optimum electrical properties: d33  353 pC/N, kp  41.1%, Tc  86 °C, ?r  4236, and tan δ  0.75%.  相似文献   

12.
Using Al2O3 and TiO2 as raw materials, adding MgO as heat stabilizer and mullite as enhancer, aluminum titanate-mullite multiphase ceramics were successfully prepared by solid phase synthesis. The effects of MgO and mullite were systematically studied on the phase composition, microstructure, thermal stability, sintering properties, and mechanical properties of aluminum titanate ceramics. The results showed that the introduction of Mg2+ can partially replace Al3+ to form MgxAl2(1-x)Ti(1+x)O5 solid solution, improved the thermal stability of aluminum titanate ceramics, and promoted the formation and growth of grains, which reduced the sintering temperature. The crack deflections caused by mullite particles improved the mechanical properties. The filling effect of mullite particles and the formation of silica in mullite raw materials were conducive to ceramic densification. The statistics of Mg4M10 sample were as follows: the porosity was only 2.9%, the flexural strength was as high as 64.15 MPa, and the thermal expansion coefficient was 1.35 × 10−6 K−1 (RT-700°C), encouraging the application of ceramics with high thermal mechanical properties.  相似文献   

13.
《Ceramics International》2022,48(1):199-204
MgNb2-xVx/2O6-1.25x (0.1≤x≤0.6) ceramics with orthorhombic columbite structures were prepared at low-temperature by a solid-phase process. The phase component, microscopic morphology, low-temperature sintering mechanism and microwave dielectric performance of MgNb2-xVx/2O6-1.25x ceramics were comprehensively investigated. Low-temperature sintering densification of dielectric ceramics was achieved via the nonstoichiometric substitution of vanadium (V) at the Nb-site. In contrast to pure MgNb2O6 ceramics, the sintering temperature of MgNb2-xVx/2O6-1.25x (x = 0.2) ceramics was reduced by nearly 300 °C owing to the liquid-phase assisted sintering mechanism. The liquid phase arises from the autogenous low-melting-point phase. Meanwhile, MgNb2-xVx/2O6-1.25x (x = 0.2) samples with nonstoichiometric substitution could achieve a more than 900% improvement in the Q × f value, compared with stoichiometrically MgNb2-xVxO6 (x = 0.1, 0.2) ceramics. Finally, MgNb2-xVx/2O6-1.25x dielectric ceramics possess outstanding microwave dielectric properties: εr = 20.5, Q × f = 91000, and τf = -65 ppm/°C when sintered at 1030 °C for x = 0.2, which provides an alternative material for LTCC technology and an effective approach for low-temperature sintering of Nb-based microwave dielectric ceramics.  相似文献   

14.
ABSTRACT

A novel high closed porosity Al2O3-MgAl2O4 refractory aggregate has been successfully fabricated by utilising superplasticity with Al2O3 and MgO as raw materials, SiC as high temperature pore-forming agent. The effects of the addition amounts of MgO and SiC on porosity, sintering behaviours, phase composition, pore size distribution and microstructure of the refractory aggregate have been investigated. The formation mechanism of the closed pore in the refractory aggregate has been discussed. The results showed that the MgO can improve the superplastic deformation ability of Al2O3-based ceramic at high temperature. With the content of MgO and SiC increased, the closed porosity and the pore size increased. The oxidation of SiC improved the sinterability of materials at the initial stage of sintering, and then the released gases due to the further oxidation of SiC promoted the formation of closed pores by motivating the superplastic deformation ability of Al2O3-based materials.  相似文献   

15.
《Ceramics International》2023,49(3):4264-4272
Designed component of 0.95Al2O3–0.015Yb2O3–0.01MgO–0.025SiO2 (95Al2O3–Yb/Mg/Si) ceramics were prepared by the traditional mixed-oxide method in the sintering temperature range of 1450–1700 °C. The influence of sintering temperature on the crystal structure, densification, microstructure, mechanical, friction and wear properties of 95Al2O3-YbMgSi ceramics were systematically investigated. XRD and SEM analysis results revealed that the increase in sintering temperature was very beneficial to eliminate the pores, increase the density and grain size, which obeys the common grain growth law. Both the flexural strength and hardness of obtained samples were increased almost linearly when the sintering temperature increased from 1450 °C to 1700 °C. The ceramics sintered at 1650 °C showed the optimum properties: Hv = 1812.3, σ = 151.3 MPa, μ = 0.41, ρ = 3.72 g/cm3 and Kc = 8.06e?5 mm3/N·m, respectively. Furthermore, the results of friction and wear experiments suggested that the 95Al2O3–Yb/Mg/Si ceramic prepared at the optimizing sintering process exhibited more stable friction state and lower wear degree under non-lubricated conditions. The enhanced mechanical properties could be attributed to their structure densification, pore elimination and gain growth with the increase of sintering temperature.  相似文献   

16.
Porous Si3N4/SiC ceramics with high porosity were prepared via nitridation of Si powder, using SiC as the second phase and Y2O3 as sintering additive. With increasing SiC addition, porous Si3N4/SiC ceramics showed high porosity, low flexural strength, and decreased grain size. However, the sample with 20wt% SiC addition showed highest flexural strength and lowest porosity. Porous Si3N4/SiC ceramics with a porosity of 36–45% and a flexural strength of 107‐46MPa were obtained. The linear shrinkage of all porous Si3N4/SiC ceramics is below 0.42%. This study reveals that the nitridation route is a promising way to prepare porous Si3N4/SiC ceramics with favorable flexural strength, high porosity, and low linear shrinkage.  相似文献   

17.
《Ceramics International》2022,48(8):10472-10479
Porous mullite ceramics are widely used in heat insulation owing to their high temperature and corrosion resistant properties. Reducing the thermal conductivity by increasing porosity, while ensuring a high compressive strength, is vital for the synthesis of high-strength and lightweight porous mullite ceramics. In this study, ceramic microspheres are initially prepared from pre-treated high-alumina fly ash by spray drying, and then used to successfully prepare porous mullite ceramics with enhanced compressive strength via a simple direct stacking and sintering approach. The influence of sintering temperature and time on the microstructure and properties of porous mullite ceramics was evaluated, and the corresponding formation mechanism was elucidated. Results show that the porous mullite ceramics, calcined at 1550 °C for 3 h, possess a porosity of 47%, compressive strength of 31.4 MPa, and thermal conductivity of 0.775 W/(m?K) (at 25 °C), similar to mullite ceramics prepared from pure raw materials. The uniform pore size distribution and sintered neck between the microspheres contribute to the high compressive strength of mullite ceramics, while maintaining high porosity.  相似文献   

18.
(100-x) wt.% BaTi0.85Sn0.15O3–x wt.% MgO (BTS/MgO) composite ceramics were prepared by spark plasma sintering (SPS) technology. Phase constitution, microstructure, dielectric and electrical energy storage properties of BTS/MgO composite ceramics were investigated. The samples prepared by SPS had smaller grain size and presented layer-plate substructure. Dielectric permittivity and dielectric loss of BTS/MgO composite ceramics decreased significantly with the content of MgO increasing, and dielectric tunability maintained a relatively high value (>45%). Meanwhile, the dielectric breakdown strength was improved when addition of MgO in BTS matrix, which resulted in a significant improvement of energy storage density. The high dielectric breakdown strength of 190 kV/cm, energy storage density of 0.5107 J/cm3 and energy storage efficiency of 92.11% were obtained in 90 wt.% BaTi0.85Sn0.15O3–10 wt.% MgO composite ceramics. Therefore, BTS/MgO composites with good tunable dielectric properties and electrical energy storage properties could be exploited for energy storage and phase shifter device applications.  相似文献   

19.
With the development of 5G/6G communication, the requirements of portable devices for miniaturization and multifunction make low-temperature co-fired ceramic (LTCC) more and more important. In the area of high-frequency high-density passive integration, microwave dielectric ceramics with a low dielectric loss and high thermal conductivity are urgently needed to ensure the effective signals transmission and system reliability. However, most microwave dielectric ceramics with a low dielectric loss were not applicable for the LTCC technology due to the high sintering temperature. In this work, a series of MgO-based ceramics [(100 − x) wt.% MgO–x wt.% (0.2SrF2–0.8LiF) (x = 5,7,10)] were prepared by solid-state reaction method. The addition of sintering aid 0.2SrF2–0.8LiF (S2L8) decreased the sintering temperature below 880°C without degrading the microwave dielectric properties of ceramics. Microwave dielectric properties of ceramics, including quality factor Q × f, relative permittivity εr, and temperature coefficient of resonant frequency τf, were investigated to find the optimum composition and sintering temperature. In general, MgO–7 wt.% S2L8 ceramic sintered at 860°C exhibits outstanding properties of Q × f = 180 233 GHz, εr = 9.11, τf = −40.33 ppm/°C, and a high thermal conductivity of 24.02 W/(m K). This series of ceramics are suitable to be co-fired with Ag electrodes. With all those great properties, this series of MgO-based ceramics are expected to be the candidates for LTCC applications in 5G/6G technology.  相似文献   

20.
《Ceramics International》2022,48(13):18513-18521
Microporous refractories applied in the working-lining of metallurgical furnaces have been rapidly developed in recent years owing to the outstanding mechanical properties, thermal insulation performance and slag resistance, the pore structure of which plays a critical role in the variation of service performance. Meanwhile, the microporous magnesia aggregates were prepared in our previous research with the introduction of nano-sized particles to overcome the shortcomings of high thermal conductivity, poor thermal shock resistance and slag penetration resistance, however, the pore evolution during sintering still remains to be investigated. Hence, in this study, the pore evolution of microporous magnesia aggregates is explored specifically and the effect of nano-sized MgO on pore structure and sintering is simultaneously discussed. The sintering model of microporous magnesia was built for analyzing the pore structure evolution process. The results revealed that a micro-nano double-scale sintering model developed by the introduction of nano-sized MgO dramatically promoted the sintering kinetic force and boundary migration velocity. The sintering pressure discrepancy and free energy change per unit mole of specimens were respectively increased by ~43 times and ~48 times, which effectively improved the closed porosity and pore distribution homogeneity, while reduced the pore size. Meanwhile, the high sintering diving force lead to the significant improvement of direct bonding degree and grain size of microporous magnesia. With the addition of 3 wt% nano-sized MgO, the optimal sintering properties with closed porosity of 6.4%, bulk density of 3.23 g/cm3 and median equivalent pores diameters of 4.07 μm were achieved. The exploration of pore evolution in microporous magnesia aggregates contributed to the fabrication and industrialization development of microporous refractories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号