首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excessive sintering shrinkage leads to severe deformation and cracking, affecting the microstructure and properties of porous ceramics. Therefore, reducing sintering shrinkage and achieving near-net-size forming is one of the effective ways to prepare high-performance porous ceramics. Herein, low-shrinkage porous mullite ceramics were prepared by foam-gelcasting using kyanite as raw material and aluminum fluoride (AlF3) as additive, through volume expansion from phase transition and gas generated from the reaction. The effects of AlF3 content on the shrinkage, porosity, compressive strength, and thermal conductivity of mullite-based porous ceramics were investigated. The results showed that with the increase of content, the sintering shrinkage decreased, the porosity increased, and mullite whiskers were produced. Porous mullite ceramics with 30 wt% AlF3 content exhibited a whisker structure with the lowest shrinkage of 3.5%, porosity of 85.2%, compressive strength of 3.06 ± 0.51 MPa, and thermal conductivity of 0.23 W/(m·K) at room temperature. The temperature difference between the front and back sides of the sample reached 710°C under high temperature fire resistance test. The low sintering shrinkage preparation process effectively reduces the subsequent processing cost, which is significant for the preparation of high-performance porous ceramics.  相似文献   

2.
Porous anorthite/mullite ceramics with both high porosity and high strength have been successfully fabricated by foam-gelcasting and pressureless sintering technology, using α-Al2O3, SiO2, and CaCO3 as starting materials and MnO2 as sintering aids. The porous mullite ceramics prepared in this study had 83.3% porosity and 0.3 W/m·K thermal conductivity, exhibited compressive strength value as high as 6.1 MPa. The samples fabricated with mullite content of 30 mol% possessed 79.4% porosity and 5.9 MPa compressive strength showed thermal conductivity as low as 0.19 W/m·K. With the addition of MnO2, the properties of the prepared materials varied slightly when mullite content changed in a large scale. The results showed that the addition of MnO2 promoted the reaction, affected sintering and grain growth, and contributed to high strength and low-thermal conductivity.  相似文献   

3.
New gel system for preparing mullite porous ceramics by gel-casting freeze-drying was proposed, using pectin as gel source and alumina and silica as raw materials. Directional channels were formed due to sublimation of water during freeze-drying and decomposition of pectin during high temperature sintering to prepare porous mullite ceramic membranes. Effects of solid content on the properties of mullite ceramics in terms of phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal conductivity, pressure drop, and gas permeability were investigated. It was found that prepared porous mullite possessed high apparent porosity (56.04%–75.34%), low bulk density (.77–1.37 g/cm3), uniform pore size distribution, relatively high compressive strength (.61–3.03 MPa), low thermal conductivity (.224–.329 W/(m·K)), high gas permeability coefficient (1.11 × 10−10–4.73 × 10−11 m2), and gas permeance (2.18 × 10−2–9.32 × 10−3 mol⋅m−2⋅s−1⋅Pa−1). These properties make prepared lightweight mullite ceramic membranes promising for application in high temperature flue gas filtration. Proposed gel system is expected to provide a new route to prepare porous ceramics with high porosity and directional channels.  相似文献   

4.
Porous mullite ceramics were fabricated from an industrial grade mullite powder by gelcasting process using fly ash cenospheres (FAC) as a pore‐forming agent. The influence of content of FAC and sintering temperature on the density and strength was evaluated. The microstructure showed that FAC can act as a sintering aid and a pore‐forming agent. When the sintering temperature at 1200°C, porous mullite ceramics with a relatively high porosity (48.1–72.2%), low density (0.84–1.64 g/cm3), low thermal conductivity (0.16–0.22 W/m · K), and high compressive strength (6.21–14.70 MPa) have been obtained.  相似文献   

5.
The porous anorthite ceramics with high porosity, good mechanical strength and low heat conductivity were prepared using red mud and fly ash as raw materials via the pore forming method. The effects of sintering temperature and fly ash on phase evolution, densification, compressive strength, thermal conductivity and microstructure of the ceramic materials were investigated. The results showed that the compressive strength of the porous ceramics had an obvious improvement with the increase in fly ash, and the densification and heat conductivity decreased firstly and then increased. In particular, specimen S2 containing 30 wt% red mud and 40 wt% fly ash sintered at 1150°C had the better performances. It had the water absorption of 18.18%, open porosity of 38.52%, bulk density of 1.29 g/cm3, compressive strength of 42.46 MPa, and heat conductivity of 1.24 W/m·K. X-ray diffraction analysis indicated that mullite, anorthite, α-quartz, and diopside ferrian were the dominant phases in the specimens. Scanning electron microscopy micrographs illustrated that plenty of open pores with strip shape and closed pores with axiolitic shape existed in the specimens. Furthermore, the existence of mullite could prevent crack propagation to enhance the energy of inter-granular fracture. It endowed the porous anorthite ceramics with high porosity, good compressive strength, and low heat conductivity.  相似文献   

6.
A bird nest-like structure was designed by using the mullite fiber as the matrix and SiO2 as the high temperature binder. This special material was successfully prepared by a TBA-based gel-casting process. The randomly arranged fiber laps bonded by SiO2 binder was the most important structure characteristic of this porous material. The effect of sintering temperature on the properties, i.e. porosity, bulk density, linear shrinkage, compressive strength, thermal conductivity and the microstructure was studied. The composite exhibited significant pseudoductility. The fracture mechanism of this composite under compression was discussed. The results indicated that the sintering temperature ranging from 1500 to 1600 °C was suitable for yielding mullite fiber matrix porous ceramics which had a low thermal conductivity (0.19–0.22 W/m K), a relatively high compressive strength (3–13 MPa) and a high resilience (66–70%) for applications in the thermal insulators and high-temperature elastic seal field.  相似文献   

7.
《Ceramics International》2019,45(15):18865-18870
Near-net-shape mullite ceramics with high porosity were prepared from ultra-low cost natural aluminosilicate mineral kaolin as raw material and polystyrene micro-sphere (PS) as pore-forming agent. Microstructure, flexural strength, thermal conductivity and dielectric properties of the ceramics were systematically researched. Results show that the porous mullite ceramics possess fibrous skeleton structure formed by a large quantity of interlocked mullite whiskers, which results in good mechanical properties and low-to-zero sintering shrinkage. Flexural strength of the porous mullite ceramics can be up to 41.01 ± 1.12 MPa, even if the porosity is as high as 62.44%. The dielectric constant and loss tangent of the porous mullite ceramics at room temperature are lower than 2.61 and 5.9 × 10−3, respectively. Besides, dielectric constant is very stable with the rising of temperature, and the dielectric loss can be consistently lower than 10−2 when the temperature is not higher than 800 °C. In addition, thermal conductivity at room temperature is as low as 0.163 W/m/K when the porosity of mullite ceramics is 80.05%. The infiltration of SiO2 aerogels (SiO2 AGs) can further decrease the thermal conductivity to 0.075 W/m/K, while has just little effects on the dielectric properties. Excellent mechanical, thermal and dielectric properties show that the porous mullite ceramics have potential applications in radome fields. The porous mullite ceramics prepared from kaolin not only have low cost, but also can achieve near-net-shape.  相似文献   

8.
Porous anorthite/mullite whisker ceramics with both high strength and low thermal conductivity have been successfully prepared by combining seed-assisted in situ synthesis and foam-freeze casting techniques. The addition of mullite seed was conducive to a reduction in the sintering shrinkage, pore size, and anorthite grain size. This increased the high aspect ratio of mullite whiskers, which enhanced the strength and diminished the thermal conductivity. Mullite whiskers overlapped to form a stable three-dimensional network structure similar to the bird's nest, which was also beneficial to heighten the mechanical properties of the prepared porous ceramics. Through this method, the prepared materials had a high apparent porosity of 87.7–90.2%, a low bulk density of 0.29–0.36 g/cm3, a high compressive strength of 0.65–3.31 MPa, and low thermal conductivity of 0.067–0.112 W/m·K. The results indicated that the method described here can fabricate porous ceramics with excellent properties for further thermal insulating applications.  相似文献   

9.
Porous yttria‐stabilized zirconia (YSZ) ceramics were fabricated using tert‐butyl alcohol (TBA)‐based gelcasting with monodisperse polymethylmethacrylate (PMMA) microspheres as both pore‐forming agent and lubricant agent. The TBA‐based slurry of 50 vol% solid loading with excellent rheological properties appropriate for casting was successfully prepared by using a commercial polymer dispersant DISPERBYK‐163 as both dispersant and stabilizer. The distribution of the spherical pores made from PMMA microspheres was very homogeneous. Their average diameter decreased from 16.9 to 15.7 μm when the sintering temperature was increased from 1350°C to 1550°C. The compressive strength increased from 14.57 to 142.29 MPa and the thermal conductivity changed from 0.17 to 0.65 W/m·K when the porosity decreased from 71.6% to 45.1%. The results show that this preparation technology can make all the main factors controllable, such as the porosity, the size and shape of pores, the distribution of pores, and the thickness and density of pore walls. This is significant for fabricating porous ceramics with both high compressive strength and low thermal conductivity.  相似文献   

10.
《Ceramics International》2022,48(3):3578-3584
Porous mullite ceramics are potential advanced thermal insulating materials. Pore structure and purity are the main factors that affect properties of these ceramics. In this study, high performance porous mullite ceramics were prepared via aqueous gel-casting using mullite fibers and kaolin as the raw materials and ρ-Al2O3 as the gelling agent. Effects of addition of mullite fibers on the pore structure and properties were examined. The results indicated that mullite phase in situ formed by kaolin, and ρ-Al2O3 ensured the purity of mullite samples and mullite fibers bonded together to form a nest-like structure, greatly improving the properties of ceramic samples. In particular, the apparent porosity of mullite samples reached 73.6%. In the presence of 75% of mullite fibers, the thermal conductivity was only 0.289 W/m K at room temperature. Moreover, the mullite samples possessed relatively high cold compressive strength in the range of 4.9–9.6 MPa. Therefore, porous mullite ceramics prepared via aqueous gel-casting could be used for wide applications in thermal insulation materials, attributing to the excellent properties such as high cold compressive strength and low thermal conductivity.  相似文献   

11.
In this work, porous ZrC-SiC ceramics with high porosity and low thermal conductivity were successfully prepared using zircon (ZrSiO4) and carbon black as material precursors via a facile one-step sintering approach combining in-situ carbothermal reduction reaction (at 1600 °C for 2 h) and partial hot-pressing sintering technique (at 1900 °C for 1 h). Carbon black not only served as a reducing agent, but also performed as a pore-foaming agent for synthesizing porous ZrC-SiC ceramics. The prepared porous ZrC-SiC ceramics with homogeneous microstructure (with grain size in the 50–1000 nm range and pore size in the 0.2–4 µm range) possessed high porosity of 61.37–70.78%, relatively high compressive strength of 1.31–7.48 MPa, and low room temperature thermal conductivity of 1.48–4.90 W·m?1K?1. The fabricated porous ZrC-SiC ceramics with higher strength and lower thermal conductivity can be used as a promising light-weight thermal insulation material.  相似文献   

12.
Porous anorthite/mullite whiskers ceramics with high porosity (>91%) and high strength (>0.45 MPa) have been successfully prepared by foam gel-casting method. Effects of extra mullite whiskers on properties including thermal conductivity and compressive strength at different temperatures were investigated and discussed in terms of microstructure observed through SEM and TEM. The results showed that the addition of extra mullite whiskers in certain content could effectively reduce thermal conductivity, improve the compressive strength both at room and high temperature at same time. When the mullite whiskers content was 20 mol%, the porosity was as high as 91.6 ± 0.19%, the thermal conductivity was low to 0.034 ± 0.003 W/(m·K), and the compressive strength at 1000°C was high to 0.64 ± 0.11 MPa three times to the pure one. Small pores, small grains, and more phase interface or grain boundary caused by the addition of extra mullite whiskers were the main factors for low thermal conductivity. Meanwhile, small pores, closely bonded small grains, and the stable three-dimension network formed by mullite whiskers helped to improve strength.  相似文献   

13.
《Ceramics International》2017,43(7):5478-5483
Porous fibrous mullite ceramics with a narrow range of pore size distribution have been successfully prepared utilizing a near net-shape epoxy resin gel-casting process by using mullite fibers, Al2O3 and SiC as raw materials. The effects of sintering temperatures, different amounts of fibers and Y2O3 additive on the phase compositions, linear shrinkage, apparent porosity, bulk density, microstructure, compressive strength and thermal conductivity were investigated. The results indicated that mullite-bonded among fibers were formed in the porous fibrous mullite ceramics with a bird nest pore structure. After determining the sintering temperatures and the amount of fibers, the tailored porous fibrous mullite ceramics had a low linear shrinkage (1.36–3.08%), a high apparent porosity (61.1–71.7%), a relatively high compressive strength (4.4–7.6 MPa), a low thermal conductivity (0.378–0.467 W/m K) and a narrow range of pore size distribution (around 5 µm). The excellent properties will enable the porous ceramics as a promising candidate for the applications of hot gas filters, thermal insulation materials at high temperatures.  相似文献   

14.
Porous mullite matrix ceramics have excellent thermal and mechanical properties suitable for applications such as in thermal insulation. However, their applications are limited by processing defects from nonuniform sintering shrinkage and the trade-off between high porosity (preferred for low thermal conductivity) and high mechanical strength. Herein, we seek to minimize the sintering shrinkage by near-net-size preparation and improve the strength by in situ formed whisker network structure. Gelcasting forming technology and pressureless sintering were used to prepare porous mullite matrix ceramics using kyanite and α-Al2O3 powders as the starting materials and using MoO3 to promote the growth of mullite whiskers. The results showed that the sintering shrinkage could be compensated by the volume expansion from solid-state reaction during reaction sintering. The in situ formed three-dimensional (3D) whisker network further reduced sintering shrinkage and effectively improved the strength of the ceramics. An ultralow sintering shrinkage of .78% was achieved. The near-net-shape porous mullite matrix ceramics strengthened by 3D whisker network had a high porosity of 63.9%, a high compressive strength of 83.8 MPa and a high flexural strength of 53.5 MPa.  相似文献   

15.
A novel approach to fabricate porous mullite ceramics with homogeneous pore size and high-strength using green non-toxic and cost-effective poly-γ-glutamic acid (γ-PGA) gelling system was reported for the first time. Effect of γ-PGA addition, additive amount and solid loading on rheological behavior of the slurries, and microstructure and properties of samples were investigated systematically. By optimizing the solid loading of mullite samples, we are able to get the sample with small pores (< 200 µm) dominating (93.3% of the total pores), and compressive strength of the sample reaches up to 26.62 MPa. In addition, the mullite ceramics exhibited high porosity of 75.7% with low thermal conductivity of 0.279 W/(m·K) at room temperature. This study not only provides a green and non-toxic gelling system but also offers porous mullite ceramics with low thermal conductivity and excellent mechanical strength as an energy-saving thermal insulation material.  相似文献   

16.
The preparation of refractories with both low thermal conductivity and high strength are continuously pursued in industrial furnaces. In this work, mullite refractories with low thermal conductivity and high strength were developed using fly ash as main raw material, and the influence of the quantity of fly ash and sintering temperature on the structure and properties of mullite refractories were investigated. The results show that mullite refractories with low thermal conductivity and high strength could be prepared by using fly ash in large proportion; the thermal conductivity of the samples decreased with the addition of the fly ash and increased with the increase of sintering temperature; the cold compressive strength and modulus of rupture of samples all are enhanced with the increase of sintering temperature, which is attributed to the formation of more elongated mullite by the reconstruction of fly ash at high temperature. For the mullite refractory using 65.04 wt% fly ash treated at 1600°C, the thermal conductivity was .732W/(m·k) at 1000°C, and the cold compressive strength and modulus of rupture could reach 143.5 ± 5.7 MPa and 47.0 ± 4.1 MPa respectively. It can be considered to use as a prospective work lining in industrial furnaces to meet energy saving requirements.  相似文献   

17.
The electrical, thermal, and mechanical properties of porous SiC ceramics with B4C-C additives were investigated as functions of C content and sintering temperature. The electrical resistivity of porous SiC ceramics decreased with increases in C content and sintering temperature. A minimal electrical resistivity of 4.6 × 10?2 Ω·cm was obtained in porous SiC ceramics with 1 wt% B4C and 10 wt% C. The thermal conductivity and flexural strength increased with increasing sintering temperature and showed maxima at 4 wt% C addition when sintered at 2000 °C and 2100 °C. The thermal conductivity and flexural strength of porous SiC ceramics can be tuned independently from the porosity by controlling C content and sintering temperature. Typical electrical resistivity, thermal conductivity, and flexural strength of porous SiC ceramics with 1 wt% B4C-4 wt% C sintered at 2100 °C were 1.3 × 10?1 Ω·cm, 76.0 W/(m·K), and 110.3 MPa, respectively.  相似文献   

18.
《应用陶瓷进展》2013,112(4):204-209
Porous mullite ceramics were prepared at 1300–1600°C for 2?h via a foam-gelcasting route using industrial-grade mullite powders as the main raw material, Isobam 104 as the dispersing and gelling agent, triethanolamine lauryl sulphate as the foaming agent and sodium carboxymethyl cellulose as the foam stabilising agent. The effects of firing temperature on the sintering behaviour of green samples as well as microstructures and properties of final porous mullite products were investigated. With increasing the temperature from 1300 to 1600°C, linear shrinkage and bulk density values of fired samples increased, whereas their porosity decreased. Mechanical strength and thermal conductivity values of fired samples decreased with increasing their porosities. Even at a porosity level as high as 79.4%, compressive and flexural strengths of fired samples (with average pore size of 314?μm) remained as high as 9.0 and 3.7?MPa, respectively, and their thermal conductivity (at 200°C) remained as low as 0.21?W?(m?1?K?1).  相似文献   

19.
《Ceramics International》2021,47(24):33978-33987
In this work, a novel and facile technique based on using KCl as space holders, along with partial sintering (at 1900 °C for 30 min), was explored to prepare porous ZrB2–SiC ceramics with controllable pore structure, tunable compressive strength and thermal conductivity. The as-prepared porous ZrB2–SiC samples possess high porosity of 45–67%, low average pore size of 3–7 μm, high compressive strength of 32–106 MPa, and low room temperature thermal conductivity of 13–34 W m−1 K−1. The porosity, pore structure, compressive strength and thermal conductivity of porous ZrB2–SiC ceramics can be tuned simply by changing KCl content and its particle size. The effect of porosity and pore structure on the thermal conductivity of as-prepared porous ZrB2–SiC ceramics was examined and found to be consistent with the classical model for porous materials. The poring mechanism of porous ZrB2–SiC samples via adding pore-forming agent combined with partial sintering was also preliminary illustrated.  相似文献   

20.
Hierarchically pore-structured porous diatomite ceramics containing 82.9∼84.5% porosity were successfully prepared for the first time via foam-gelcasting using diatomite powder as the main raw material. Sizes of mesopores derived from the raw material and macropores formed mainly from foaming were 0.02∼0.1 μm and 109.7∼130.5 μm, respectively. The effect of sintering temperature, additive content and solid loading of slurry on pore size and distribution, and mechanical and thermal properties of as-prepared porous ceramics were investigated. Compressive strength of as-prepared porous ceramics increased with sintering temperature, and the one containing 82.9% porosity showed the highest compressive strength of 2.1 ± 0.14 MPa. In addition, the one containing 84.5% porosity and having compressive strength of 1.1 ± 0.07 MPa showed the lowest thermal conductivity of 0.097 ± 0.001 W/(m·K) at a test temperature of 200 ̊C, suggesting that as-prepared porous ceramics could be potentially used as good thermal insulation materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号