首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
Nanocomposites based on cadmium sulfide (CdS) and Na-montmorillonite (Na+-Mt) were prepared by a hydrothermal method using Cd[NH2CSNH2]SO4 complex as precursor of CdS which was derived from cadmium sulfate and thiourea. These nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR) and X-fluorescence (XF). The nanocomposites consist of nanosized CdS pillars, which tend to increase in size as the amount of complex precursor increases. The CdS crystals have a hexagonal symmetry. The photocatalytic activity of the obtained CdS–Mt nanocomposites is improved significantly compared to that of the Mt and pure CdS. The resulting CdS–Mt nanocomposites could degrade methylene blue and rhodamine 6G under near UV–visible irradiation.  相似文献   

2.
Nanocomposite films of CdS:Cu nanoparticles with chitosan and sodium alginate were prepared using spin‐coating method, and characterized by X‐ray diffraction, transmission electron microscopy, atomic force microscopy (AFM), ultraviolet–visible (UV–vis), and photoluminescent spectrum. The CdS:Cu nanoparticles have a cubic structure with an average crystal size of ∼2 nm, which show blue shift in UV–vis absorption spectra compared to bulk CdS. Furthermore, the CdS:Cu nanoparticles are formed steadily with increasing number of composite layers and homogeneously distributed between the chitosan and alginate layer. AFM measurement shows that the average height of a mono‐layered composite film is 25 nm. Emissions ascribed to the electron–hole recombination of CdS and the t2‐like energy level of Cu was observed for the multi‐layered composite films. POLYM. COMPOS., 35:477–481, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
A method for fabrication of urushiol–cadmium coordination polymer was developed under UV irradiation, and then hybrid composites of CdS nanoparticles embedded in polyurushiol (PU) matrices were prepared by immersion the coordination polymer in thioacetamide (TAA). XPS measurements showed the coordination between cadmium ion and oxygen after UV irradiation. In the course of UV irradiation, the hydroxyl groups on the phenyl ring of urushiol were dissociated to urushiol semiquinone, and coordinated with cadmium ions to form complexes. The –OH groups on the phenyl ring of urushiol acted as the coordination sites for cadmium ion aggregations and the nanosized CdS particles were successfully grown in situ at these sites with the release of S2− ions from TAA. The results from X-ray powder diffraction (XRD) analysis and the FT-IR spectra showed the formation of CdS nanoparticles and the polymerization of urushiol monomers. TEM showed that CdS nanoparticles were homogeneously dispersed in PU matrices. TG analysis showed that the PU/CdS nanocomposites had excellent thermo-stability. A possible formation mechanism of CdS nanoparticles in the PU matrices was also suggested based on the experimental results.  相似文献   

4.
Nanocrystalline CdS impregnated cellulose nanocrystals (CdS‐Cellulose) were embedded in polyvinylidene fluoride (PVDF) matrix and free‐standing flexible films of CdS‐cellulose/PVDF nanocomposite were made by sol‐gel technique. Effect of CdS loadings in cellulose embedded in the host matrix (PVDF) on the impedance properties was studied critically for the above samples. Dielectric constants were studied as a function of frequencies (1–100 kHz) at room temperatures. The dielectric constant increased significantly in CdS‐cellulose/PVDF nanocomposite than that for pristine PVDF film. The higher values of dielectric constant as well as dielectric loss were obtained at lower frequencies. This may be caused due to contributions arising out of space charge, dipole, and electronic polarizations. At higher frequencies, only dipole and electronic polarization were seen to contribute significantly. The nature of the Cole‐Cole plots could be seen to deviate significantly from one impedance semicircular arc before diverging after a frequency of 3,158, 2,147, and 1,925 Hz for CdS‐cellulose/PVDF nanocomposite with increased loading of CdS. POLYM. ENG. SCI., 58:1419–1427, 2018. © 2017 Society of Plastics Engineers  相似文献   

5.
Films of poly(vinyl alcohol)/cadmium sulphide (PVA/CdS) nanocomposite containing various concentrations of Cd2+ ions were prepared using gamma radiation at different doses from 50 up to 200 kGy. The UV/VIS spectra revealed that the CdS/PVA nanocomposites showed blue shift for the absorption peak as compared with bulk CdS. As the irradiation dose increased, a gradual red shift in the wavelength accompanying with broadening of the absorption peak was observed. The estimated optical band gap energies and the calculated CdS particle sizes of (PVA/CdS) showed correlation between their values and the variable parameters (irradiation dose and Cd+2:S?2 molar ratio). Transmission electron microscopy images showed that the CdS/PVA nanocomposites were dispersed as spherical CdS nanoparticles with homogeneity at either lower concentration of CdCl2 or irradiation dose. The nano‐rod structures of CdS was accompanied with small agglomeration at either higher CdCl2 concentration or irradiation dose. A cubic phase and mixture of cubic and hexagonal phases of the prepared CdS nanoparticles were formed at lower and higher CdCl2 concentrations, respectively. Fourier Transform Infrared spectra confirmed the coordination of CdS nanoparticles with the hydroxyl groups of PVA matrix. POLYM. ENG. SCI., 55:2583–2590, 2015. © 2015 Society of Plastics Engineers  相似文献   

6.
A chitosan (CTN)/silica‐supported nanosized palladium catalyst was obtained from a silica‐supported chitosan palladium complex through a complex transition method. An adsorption model was employed to simplify the structure of the di‐supporter. It was indicated that when the polymer coil adsorbed on the silica surface with even a monolayer the catalytic activity would reach an optimum value, and different situations of the, nanosized palladium particles would cause a different catalysis. The molar ratio of the chitosan structure unit to the palladium would affect the metal's size, which therefore influenced its catalytic activity. The experimental results corresponded with the inferences. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 989–994, 2002  相似文献   

7.
A new two‐phase route was developed to prepare monodisperse cadmium sulfide (CdS) quantum dots (QDs) with a narrow size distribution. In a two‐phase system, chloroform and water were used as separate solvents for palmitoyl chloride functionalized hyperbranched polyamidoamine (HPAMAM‐PC) and cadmium acetate/sodium sulfide, respectively. The amphiphilic HPAMAM‐PC, with a hydrophilic dendritic core and hydrophobic arms, formed stable unimolecular micelles in chloroform and was used to encapsulate aqueous Cd2+ ions. After the reaction with S2− ions from the aqueous phase, monodisperse and uniform‐sized CdS QDs stabilized by HPAMAM‐PC unimolecular micelles were obtained. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120:991–997, 2011  相似文献   

8.
With specific annealing schemes applied to a neat polystyrene-block-poly(ethylene oxide) (SE) and its composites with cadmium sulfide quantum dots (CdS QD), we have observed microdomain structures and phase transitions in the system using temperature-resolved small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Both TEM images and SAXS results show clearly that incorporation of surfactant-tethered CdS QD preferentially into PEO blocks leads to increases in thermal stabilities of both bcc-packed lattice (referred as long-range order) and microdomains themselves in the sphere-forming SE/CdS composites. The bcc-packed lattice in the SE/CdS composites sustains better than that in the neat SE, during a temperature elevation to ∼160 °C, at which the bcc-packed SE/CdS spheres start to transform into micelles with a short-range liquid-like order. Quantitative model analysis shows that the PEO/CdS micelles can retain their size in the SE/CdS composites up to 200 °C, whereas the PEO micelles shrink after the softening of the PS matrix around 100 °C, and disassociate largely into the PS matrix of the neat SE at 160 °C.  相似文献   

9.
One‐dimensional high‐quality CdS/poly(ethylene oxide) (PEO) hybrid nanoparticle‐polymer fibers were fabricated by an electrospinning method, followed by self‐assemble technologies with co‐fed H2S atmosphere at 60 °C. The structural and spectral information of the resulting hybrid nanofibers was characterized by field emission scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy and X‐ray diffractometer. The diameters of CdS/PEO hybrid nanofibers ranged from 90 to 200 nm and the average dimension of CdS nanoparticle within fibers from 4 to 12 nm. An interesting aspect of the CdS/PEO nanofibers shown in photoluminescence spectra and fluorescence images is that the fluorescence peaks of CdS/PEO were shifted along with changing the mass ratio of CdS/Poly(ethylene oxide), and consequently the size and phase of nanocrystal CdS.

  相似文献   


10.
Polymer gel electrolytes were investigated for an electrochromic device (ECD) using nickel oxide thin film. Poly(ethylene oxide) (PEO) derivatives were cross‐linked and swelled in KOH–aqueous solution giving a hydrogel electrolyte. The ECD containing the uniformly cross‐linked hydrogel showed good result in electrochromic switching performance. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1305–1308, 2002  相似文献   

11.
Summary: Novel inorganic‐organic hybrid materials composed of cadmium sulfide (CdS) semiconducting nanocrystals and regenerated cellulose (RC) were prepared by using in situ synthesizing method. Cellulose was dissolved in a 6 wt.‐% NaOH/4 wt.‐% urea/thiourea aqueous solution at low temperature followed by addition of cadmium chloride (CdCl2), resulting that the CdS nanocrystals were successfully grown in situ in the cellulose solution. Nanocomposite films containing homogeneous CdS nanoparticles were obtained by casting the resulting solution. Their structure and optical properties were characterized by X‐ray photoelectron spectroscopy, wide‐angle X‐ray diffraction, thermogravimetry analysis, dynamic mechanical analysis, atomic force microscopy, transmittance electronic microscope, UV‐vis spectroscopy, and photoluminescence spectroscopy. The experimental results confirmed that the CdS nanocrystalline existed in the composite films, and cellulose matrix provided a confined medium for CdS particle growth in uniform size. The CdS/RC composites showed narrow emission in photoluminescence spectra, and their optical absorbance in the UV range was higher than that of the cellulose film without CdS. This work provided a simple method to prepare cellulose functional materials in NaOH/urea aqueous solution.

Photoluminescence of CdS/RC nanocomposites and TEM image of CdS nanocrystals dispersed in RC matrix.  相似文献   


12.
Cadmium sulfide/organic nanocomposites, which were based on long nanowires, were synthesized by a simple reaction between cadmium nitrate and thioglycolic acid (TGA) at room temperature. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected‐area electron diffraction (SAED), Fourier transform infrared (FTIR) spectra, and thermogravimetric analysis (TG). The CdS/organic nanocomposites was decomposed into pure wurtzite CdS nanorods through hydrothermal treatment at 190°C. Photoluminescence (PL) spectra were used to study the optical properties of CdS/organic composite and pure CdS. It is found that the emission maximum of the CdS/TGA nanocomposite is significantly blue‐shifted, and the intensity is highly enhanced as compared to the luminescence spectrum of the bare CdS nanorods.  相似文献   

13.
The surface structures of three kinds of poly(ethylene oxide)‐segmented nylon (PEO‐Ny) films prepared by the solvent‐cast method were investigated with electron spectroscopy for chemical analysis (ESCA). The PEO‐Ny's used were high‐crystalline PEO‐segmented poly(iminosebacoyliminohexamethylene), low‐crystalline PEO‐segmented poly(iminosebacoylimino‐m‐xylene), and amorphous PEO‐segmented poly(iminoisophthaloyliminomethylene‐1,3‐cyclohexylenemethylene), and the PEO contents in the bulk polymers were approximately 10 wt %. The ESCA results showed that the PEO segment was enriched on the top surfaces of all the films, and the degrees of enrichment were different. The mechanism of the PEO enrichment was examined. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 10–16, 2002  相似文献   

14.
《Ceramics International》2020,46(4):4652-4663
High-quality thin film-based photodetectors containing praseodymium doped cadmium sulfide (Pr:CdS) were fabricated through spray pyrolysis and studied for various opto-electrical applications. Field emission electron microscopy (FE-SEM) revealed that the prepared films were highly compacted with an extremely fine nanostructure without any pinhole or crack. X-ray diffraction and FT-Raman spectroscopy studies confirmed the single hexagonal phase of all the films. The crystallite size was found to lie between 19 and 32 nm. Optical spectroscopy revealed that the fabricated films have low absorbance and high transmittance (in range of 70–80%). The energy gap was found to lie in the range of 2.40–2.44 eV. The PL spectra contained an intense green emission band at ~531 ± 5 nm (2.33 eV), and its intensity was enhanced by increasing the Pr doping content in CdS. The dark and photo currents of CdS increased by approximately 950 and 42 times, respectively with the addition of 5.0 wt% Pr. The responsivity (R) and specific detectivity (D*) were remarkably enhanced to 2.71 AW-1 and 6.9 × 1011 Jones, respectively, for the 5.0 wt% Pr:CdS film. The external quantum efficiency (EQE) of 5 wt% Pr:CdS films was 43 times that of pure CdS films, and the on/off ratio was 3.95 × 102 for 5.0 wt% Pr:CdS film. Its high R, D*, and EQE values, and photo-switching behavior make Pr:CdS a good contender for high quality photodetector applications.  相似文献   

15.
We prepared triphenylamine (TPA)‐containing polymers by a direct oxidative‐coupling method, which showed high thermostability, good solubility, high quantum efficiency, and blue light emission. The polymers are characterized by Fourier transform infrared spectroscopy, 1H‐NMR, ultraviolet–visible spectroscopy, thermogravimetric analysis, elemental analysis, and fluorescence spectra. The homopolymeric TPA (PTPA) was fairly soluble in CCl4 and toluene, with a quantum yield of 0.38 relative to Rhodamine B in toluene solution, and showed blue light emission in solid‐state film. The TPA–stilbene copolymers were more soluble than the PTPA and showed violet to green light emission in solid‐state film, depending on the TPA moiety contents, from which a pure blue light emission could be obtained. The emitting quantum efficiency of the copolymers measured in toluene solution was from 0.57 to 0.78 relative to Rhodamine B. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2718–2724, 2002  相似文献   

16.
Porous poly(L ‐lactide) (PLLA) films were prepared by water extraction of poly(ethylene oxide) (PEO) from solution‐cast PLLA and PEO blend films. The dependence of blend ratio and molecular weight of PEO on the porosity and pore size of films was investigated by gravimetry and scanning electron microscopy. The film porosity and extracted weight ratio were in good agreement with the expected for porous films prepared using PEO of low molecular weight (Mw = 1 × 103), but shifted to lower values than expected when high molecular weight PEO (Mw = 1 × 105) was utilized. The maximum pore size was larger for porous films prepared from PEO having higher molecular weight, when compared at the same blending ratio of PLLA and PEO before water extraction. Differential scanning calorimetry of as‐cast PLLA and PEO blend films revealed that PLLA and PEO were phase‐separated at least after solvent evaporation. On the other hand, comparison of blend films before and after extraction suggested that a small amount of PEO was trapped in the amorphous region between PLLA crystallites even after water extraction and hindered PLLA crystallization during solvent evaporation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 629–637, 2000  相似文献   

17.
A thin layer of star‐shaped poly(ethylene oxide) (PEO) (starPEO), on the polydimethylsiloxane (PDMS) membrane was prepared by a simple immobilization procedure. Photoreactive molecules were introduced on the surface of the polymeric support to achieve the formation of thin starPEO film from the materials having no functional groups. This novel technique enabled us to immobilize any kind of chemical, especially one that had no functional groups, and readily to control the amount of immobilization. The gas permeation properties of the starPEO‐immobilized PDMS membranes were investigated for pure propane and propylene. The permeance of gases were found to decrease in the starPEO‐immobilized PDMS membranes, although the ideal separation factors for propylene/propane were increased with the loading amount of silver ions, because of the facilitation action of silver ions in the immobilized PEO unit on the PDMS membranes, as propylene carriers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2369–2373, 2002  相似文献   

18.
A water‐swellable rubber (WSR), compatibilized by the amphiphilic block copolymer, has been prepared by blending a natural rubber (NR) matrix with crosslinked sodium polyacrylate (CSP), poly(ethylene oxide)‐b‐poly(butyl acrylate) (PEO‐b‐PBA), poly(ethylene glycol) (PEG), reinforced filler, and vulcanizing agents. The preparation process was described. The microphase structure of WSR was characterized by a scanning electron microscopy (SEM) photograph. The dependence of the degree of the water‐absorbing and the water‐swelling, the water‐absorbing and water‐swelling rates on CSP, PEG, and PEO‐b‐PBA contents were investigated. The compatibilizing mechanism of PEO‐b‐PBA on WSR was studied. And the optimum composition range was identified: CSP (30–60 phr), PEG (10–20 phr) PEO‐b‐PBA (PEO/PBA = 0.36, 5 phr). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3120–3125, 2002  相似文献   

19.
Porous poly(?‐caprolactone) (PCL) films were prepared by water extraction of poly(ethylene oxide) (PEO) from their solution‐cast phase‐separated blend films and the dependence of their blend ratio [XPCL = PCL/(PEO + PCL)] and molecular weight of PEO on the porosity, pore size, crystallinity, crystalline thickness, mechanical properties, morphology, and enzymatic and alkaline hydrolysis of the porous PCL films were investigated. The film porosity or extracted weight ratio was in good agreement with the expected values, irrespective of XPCL and molecular weight of PEO. The maximum pore size was larger for the porous films prepared using PEO having a lower molecular weight, compared with films prepared using PEO having a higher molecular weight at the same XPCL. Differential scanning calorimetry of the porous PCL films revealed that their crystallinity and crystalline thickness were almost constant, regardless of XPCL and molecular weight of PEO. The Young's modulus and tensile strength of the porous films decreased, whereas the elongation‐at‐break increased with decreasing XPCL. The enzymatic and alkaline hydrolysis rates of the porous films increased with a decrease in XPCL and an increase in the molecular weight of PEO. The porous PCL films having Young's modulus in the range of 2–24 kg/mm2 and enzymatic hydrolysis rate in the range of one‐ to 20‐fold that of the nonporous PCL film could be prepared by altering XPCL and the molecular weight of PEO. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2281–2291, 2001  相似文献   

20.
A new approach to the synthesis of silicate glass with cadmium sulfide (CdS) nanoparticles has been developed. It has been demonstrated that replacement of cadmium sulfide with cadmium oxide and zinc sulfide used as sources of cadmium and sulfur allows a substantial reduction of sulfur volatilization during the melting. The produced samples have been investigated by the methods of spectrophotometry in the ultraviolet and visible ranges of the optical range. Thermal treatment of the samples at temperatures exceeding the glass formation point initiates the growth of CdS nanoparticles, which results in the increase of their average size from 3 to 5.2 nm and a significant shift of the fundamental absorption edge to the longer wavelength range from 380 to 480 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号