首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以聚砜(PSf)为基膜,哌嗪(PIP)为水相单体、均苯三甲酰氯(TMC)为油相单体,采用界面聚合的方法制备了聚哌嗪酰胺-SiO_2/PSf中空纤维纳滤膜,通过在水相或者油相中添加SiO_2纳米粒子,使膜在维持较高截留率的情况下提高膜通量,讨论了界面聚合时间、SiO_2在水相或油相中的含量对膜性能的影响。结果表明,当水相PIP的质量浓度为10 g/L、SiO_2、PIP的质量比为0.05,油相TMC的质量浓度为1.5 g/L、界面聚合时间10 s,并在60℃下热处理15 min时,所得纳滤膜具有良好的分离性能,对于无机盐的截留率大小为Na_2SO_4MgSO_4NaClMgCl_2,表明纳滤膜表面带负电;对活性艳蓝溶液的截留率可达90%以上。  相似文献   

2.
界面聚合工艺条件对反渗透复合膜性能的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
邱实  吴礼光  张林  陈欢林  高从堦 《化工学报》2008,59(8):2027-2034
以聚砜超滤膜为支撑膜,间苯二胺(MPD)为水相功能单体,均苯三甲酰氯(TMC)为油相功能单体,通过界面聚合法制备了反渗透复合膜。研究了功能单体浓度、界面聚合反应时间、界面聚合成膜后热处理时间和温度等条件对复合膜分离性能的影响;并对在水相中添加相转移催化剂对复合膜分离性能的影响和相转移催化机理进行了初步探讨。首先在单因素实验条件下确定工艺条件的优化范围,然后经过正交实验得到最佳工艺条件,实验结果表明, 油相中TMC浓度为3 g•L-1、水相中MPD浓度为20 g•L-1、界面聚合反应时间为30 s、界面聚合成膜后热处理温度为90 ℃、后处理时间15 min时,所制备的反渗透复合膜表现出良好的分离性能,通量达14.91 L•m-2•h-1,截留率为0.951(测试条件: 压力1.6 MPa, 温度25 ℃, NaCl浓度20000 mg•L-1);当水相中MPD浓度较低时,加入适量的相转移催化剂,能有效地改善膜的分离性能。  相似文献   

3.
聚酰胺复合纳滤膜的制备与表征   总被引:2,自引:0,他引:2  
以间苯二甲胺(m-XDA)和均苯三甲酰氯(TMC)分别为水相和油相反应单体,通过界面聚合制备聚酰胺复合纳滤膜.研究了界面聚合反应中水相单体浓度、水相pH值、油相单体浓度、反应时间、后处理温度及时间等因素对所制备的复合膜分离性能的影响.用红外光谱(FT-IR)和扫描电子显微镜(SEM)对所制备的膜进行结构和形态表征.所制备的聚酰胺复合纳滤膜在操作压力1.4MPa下,对1000mg·L-1的硫酸钠溶液的脱盐率为82.98%,通量为28.48L·m-2·h-1.  相似文献   

4.
以聚乙烯亚胺(PEI)和单宁酸(TA)为水相单体、均苯三甲酰氯(TMC)为油相单体,通过界面聚合制备了复合纳滤膜,并对膜性能进行了表征和评价测试。结果表明,水相溶液TA、PEI的质量分数分别为0.3%、0.2%,水相pH为12,油相溶液TMC的质量浓度为0.2 g/L,反应时间为1 min,在60℃下烘干成膜为优化制备条件。此复合膜在温度为25℃、压力为0.5 MPa下得到的对4种无机盐截留顺序为Na_2SO_4MgSO_4MgCl_2NaCl,水通量MgCl_2NaClNa_2SO_4MgSO_4。该纳滤膜具有良好的SO_4~(2-)和Cl~-的分离效果。同时,该纳滤膜具有良好的耐污染性能,对腐殖酸和牛血清蛋白的24 h抗污染测试,水通量仍达到初始水通量的84.2%以上。  相似文献   

5.
以间苯二甲胺(m-XDA)和均苯三甲酰氟(TMC)分别为水相和油相反应单体,通过界面聚合制备聚酰胺复合纳滤膜。研究了界面聚合反应中水相单体浓度、水相pH值、油相单体浓度、反应时间、后处理温度及时间等因素对所制备的复合膜分离性能的影响。用红外光谱(FT-IR)和扫描电子显微镜(SEM)对所制备的膜进行结构和形态表征。  相似文献   

6.
研究了以聚砜作为支撑层,间苯二胺和均苯三甲酰氯为主要聚合单体,并使用多种添加剂,经界面聚合制备超低压反渗透复合膜,探讨了超低压反渗透复合膜制备的成膜规律和主要影响因素:底膜支撑层、水相、有机相、添加剂的种类,聚合时间和热处理温度等。试验结果表明,在适当的试验条件下制备的超低压反渗透复合膜,具有优良的分离性能。在1.0MPa测试压力,4L/min流速下,对温度25℃、浓度1500mg/L的氯化钠溶液,脱盐率可以达到99.2%,水通量达到50L/m2.h。  相似文献   

7.
以聚丙烯腈制备基膜,聚氮杂环丙烷、聚-4-苯乙烯磺酸钠为聚阳阴电解质,间苯二胺、均苯酰氯为水相和油相单体,依次用层层自组装(Lb L)和界面聚合制备双选择层正渗透膜,研究Lb L和界面聚合影响膜性能的典型因素。结果表明,优化条件,PEI和PSS的质量浓度均为1.0 g/L,Na Cl浓度为1.0 mol/L,Cu~(2+)浓度为0.20 mol/L,聚电解质单层沉积时间为10.0 min,MPD、TMC的质量浓度分别为20.0、0.25 g/L,单体反应时间均为2.0 min,Lb L3个聚电解质双层,界面聚合1次。在此优化条件下,所得正渗透膜水通量为42.40 L/(m~2·h),反向盐通量为10.86 g/(m~2·h)。结合石英晶体微天平说明Lb L中聚电解质层最为密实,其性能对膜影响较大。这种新的制备方法为提高正渗透工艺展现了一种新途径。  相似文献   

8.
中空纤维纳滤膜与反渗透膜的研究   总被引:1,自引:0,他引:1  
根据界面聚合反应成膜原理,以哌嗪(PIP)或间苯二胺(m-PD)水溶液为水相,均苯三甲酰氯(TMC)正己烷溶液为有机相,以聚砜中空纤维超滤膜为基膜,制备了一系列聚酰胺/聚砜纳滤或反渗透复合膜.研究了水相浓度、有机相浓度、界面聚合时间和温度等条件对复合膜性能的影响.结果表明:中空纤维纳滤复合膜在0.4 MPa、室温条件下,对2 g/L MgSO_4水溶液的通量可达36.64 L/(m~2·h),截留率为97.2%;中空纤维反渗透膜在0.7 MPa、室温条件下,对0.5 g/L的NaCl水溶液通量可达12.2 L/(m~2·h),截留率96.5%.  相似文献   

9.
以哌嗪(PIP)和均苯三甲酰氯(TMC)为反应单体,以聚乙烯醇(PVA)为添加剂,通过界面聚合法在聚砜超滤基膜上制备了复合纳滤膜,主要研究了PVA、PIP、TMC单体浓度、热处理条件对复合膜性能的影响,并通过扫描电子显微镜(SEM)、原子力显微镜(AFM)对复合纳滤膜结构和形貌进行表征。研究表明,PVA能够提高膜通量,增强膜亲水性,提高膜表面光滑度。最佳制膜条件是:PIP浓度为3.0 g/L,TMC浓度为1.0 g/L,PVA浓度为0.54 g/L,界面聚合时间为1 min,热处理温度为50℃,热处理时间10 min。制备的纳滤膜在处理Na2SO4、MgSO4、NaCl和MgCl2等4种盐溶液时,其截留性能与陶氏NF-270和星达NFX膜相近,而在深度处理造纸脱墨废水时,也表现出良好的分离性能和耐污染性能。  相似文献   

10.
使用三乙烯四胺(TETA)和2,3-环氧丙基三甲基氯化铵(EPTAC)混合溶液为水相单体,均苯三甲酰氯(TMC)为油相单体,通过界面聚合制备纳滤膜。结果表明在水相溶液中TETA浓度为0.2 wt%,EPTAC浓度为0.4 wt%,油相溶液 TMC 为 0.2 wt%,反应时间 30 s,在 90 ℃下热处理为最佳条件。该复合膜在 25 ℃、0.5 MPa 条件下纯水通量为80 L/(m2·h),是未添加 EPTAC 时水通量的 5.5 倍,对 NaCl 和 Na2SO4的截留率分别为 15% 和 98%;对于 15 000 mg/L NaCl 和 8 000 mg/L Na2SO4混盐溶液体系,Cl-截留率低于 1%,SO42-截留率高于 99.2%,显示了高分离选择性,满足高盐废水分盐要求。抗污染实验结果表明,该膜具有较好的抗污染性能,水通量恢复率可达99%。  相似文献   

11.
以哌嗪为水相单体,海藻酸钠为其亲水性表面活性剂,以含有均苯三甲酰氯的IsoparG为油相,聚砜超滤膜为底膜,通过界面聚合反应制备一种网络结构的抗污染纳滤膜.利用扫描电子显微镜,原子力显微镜和红外光谱仪等检测方法对纳滤复合膜进行了性能和结构方面的表征.结果 表明:在0.75 MPa、3.785 L/min、25℃恒温条件...  相似文献   

12.
以聚醚砜纳滤膜为基膜,采用胺基改性纳米SiO2掺杂树状聚酰胺-胺(PAMAM)作为水相改性剂制备了一类有机-无机复合纳滤膜。通过条件优化实验确定较佳界面聚合条件为有机相单体w(均苯三甲酰氯)=0.5%、w(PAMAM)=0.3%、w(SiO2)=0.3%、处理时间90 s、处理温度80℃。在该条件下,纳滤膜对无机盐的截留率为67.3%、通量为31.3 L/(m2·h),对模拟污水的分离性能优于采用未改性纳米SiO2制备的有机-无机复合纳滤膜。制备的纳滤膜对4种模拟矿化污水的截留顺序为Na2SO4>KCl>CaCl2>MgCl2。  相似文献   

13.
采用混酸(H2SO4/HNO3=3/1(V/V))处理多壁碳纳米管(MWNTs)制备了羧基化碳管(Carboxylated MWNTs),并与哌嗪(PIP)反应,制备了胺化的多壁纳米碳管(Amine functionalized MWNTs)。以聚砜(PSf)超滤膜为基膜,以均苯三甲酰氯(TMC)为油相单体和胺化的多壁纳米碳管与哌嗪(PIP)为水相单体,采用界面聚合法制得多壁碳纳米管改性聚哌嗪酰胺复合纳滤膜。采用傅里叶红外光谱(FT-IR)、拉曼光谱(RAM)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)和静态接触角表征了改性前后碳纳米管和复合膜的结构,结果表明哌嗪成功氨化改性了碳纳米管,基膜表面复合了一层聚哌嗪酰胺膜。重点考察了碳管在水相中添加量、TMC浓度、聚合时间对复合膜性能的影响,结果显示,在有机相单体浓度为1 g?L?1,水相单体浓度为2 g?L?1,水相中多壁碳纳米管的浓度为0.1 g?L?1,反应时间为45 s,复合膜的纯水通量为85.6 L?m?2?h?1,Na2SO4的截留率达到98%,对不同盐溶液的截留效果分别为:Na2SO4MgSO4MgCl2NaCl。水相中碳纳米管的加入,能有效改善膜的分离性能。  相似文献   

14.
以间苯二甲胺(m-XDA)为水相单体,均苯三甲酰氯(TMC)为油相单体,采用界面聚合的方法在聚砜底膜上形成一层功能层制备了荷负电复合纳滤膜。通过改变界面反应的时间、缓冲溶液的pH、油相单体浓度、水相单体浓度等条件,调节并最终优化该纳滤膜的截留率。该复合纳滤膜对不同盐溶液的截留率顺序为Na_2SO_4MgSO_4NaClMgCl_2,其中Na_2SO_4的截留率可保持在86%。通过扫描电子显微镜,衰减全反射红外光谱仪和X射线光电子能谱对具代表性的纳滤膜的结构进行了表征。利用Zeta电位仪考察该膜表面的荷电性。  相似文献   

15.
以间苯二甲胺(mXDA)为胺类单体与均苯三甲酰氯(TMC)反应,制备了1种耐氯复合纳滤膜,对其表面组成、结构进行了表征,并通过改变缓冲体系、调节界面反应条件,对该纳滤膜的性能进行优化。结果表明,界面聚合反应后在底膜上成功制备了聚酰胺层。在水相单体m XDA、油相单体TMC的质量分数分别为0.1%、0.075%,反应时间30 s、热处理时间10 min的优化条件下,复合纳滤膜对Na_2SO_4的截留率达94.5%,通量56.4 L/(m~2·h)。而且该膜在活性氯的质量浓度为5 g/L时浸泡1 h仍能保持完整的功能层结构,在截留率基本保持不变的情况下水通量提升33%。  相似文献   

16.
聚哌嗪酰胺复合纳滤膜制备及其性能表征   总被引:17,自引:4,他引:13  
以聚砜超滤膜为基膜,采用界面聚合方法制备了聚哌嗪酰胺复合纳滤膜,并对其膜性能进行了表征。实验重点考察了基膜性质、聚合单体浓度、聚合反应时间、表面活性剂浓度、酸受体添加量等因素对纳滤膜性能的影响,确定了纳滤膜制备过程的界面聚合优化条件,即:水相单体(哌嗪)浓度0.08~0.12molL-1;有机相单体(间苯二甲酰氯和均苯三甲酰氯混合物)浓度0.08~0.1molL-1;聚合反应时间3~5min。在0.4MPa、25℃条件下,实验测得复合纳滤膜的水通量为4.12Lm-2h-1bar-1,膜对浓度为0.01molL-1的NaCl的截留率为30%~40%,对浓度为0.005molL-1的Na2SO4的截留率为80%~90%;对分子量不低于300gmol-1的有机物的截留率高于95%。该膜的分离性能接近于商业纳滤膜,其分离机理主要表现为“筛分机理以及膜与电解质之间的荷电作用。  相似文献   

17.
以间苯二胺(MPD)和分子笼(Cage)为水相单体,均苯三甲酰氯(TMC)为油相单体,聚丙烯腈(PAN)超滤膜为支撑层,通过界面聚合法制备了分子笼/聚酰胺复合纳滤膜。Cage在膜中具有良好的分散性,随着Cage质量分数的增加,复合膜的水通量和对无机盐截留率都明显提高,当其质量分数为1%,在压力为0.5 MPa下,对于1 g/L的Na_2SO_4溶液的通量为26.33L/(m~2·h),截留率达到89.3%,且分离性能可保持长期稳定。在连续运行60 min后,对牛血清蛋白(BSA)的通量仍可达到14.49 L/(m~2·h)。  相似文献   

18.
使用聚砜超滤膜为基膜,以亲水二胺单体(2,2'-氧代双乙胺)为添加剂,与哌嗪以不同比例混合作为水相溶液,通过界面聚合反应制备出高亲水性的聚酰胺/聚砜纳滤复合膜。通过红外表征膜的表面化学结构;静态水接触角测试表征膜的表面亲水性能;渗透性能测试表征了原膜及改性膜的水通量和盐截留性能。结果显示,随着2,2'-氧代双乙胺单体含量增加,膜的亲水性能越好,改性膜的水接触角最低可达到32°;在氧代双乙胺质量分数0.67%,测试压力为0.7 MPa,温度为25℃条件下,改性膜对2 g/L的MgSO_4水溶液水通量为35.6 L/(m~2·h),盐截留率达到90%。  相似文献   

19.
多巴胺作为界面反应中亲水性添加剂来制备高通量的聚酰胺反渗透膜。研究了不同水相缓冲体系下,多巴胺浓度对反渗透膜亲水性、脱盐性能以及表面形貌结构的影响。反渗透膜的脱盐性能评价采用2 000 mg/LNaCl的进水溶液,测试压力为1.0 MPa,温度为25℃;膜表面形貌结构分别采用扫描电子显微镜(SEM)和原子力显微镜(AFM)进行表征。结果显示,三乙胺樟脑磺酸盐体系下制备的RO膜较三乙胺盐酸盐体系具有更高的水通量;多巴胺的加入可有效提高膜的水通量,采用三乙胺樟脑磺酸盐体系,当多巴胺添加量质量分数为1%时,RO膜的截留率和水通量分别为99.5%和41 L/(m2·h),水通量提高了32%;SEM和AFM结果显示,添加多巴胺的RO膜表面结构更为平整、均一,平均粗糙度更小。  相似文献   

20.
通过柠檬酸钠与氯化镁络合体系原位聚合并经碱浴制备了Mg(OH)2纳米杂化反渗透混合基质膜。膜的最佳制备条件为:n(柠檬酸钠)/n(氯化镁)为1,当水相柠檬酸钠添加量为0.5%,碱浴pH为11,碱浴时间为20 s时,膜的性能最佳,脱盐率达99.2%,水通量达79 L/(m2·h)。经SEM检测发现,随着水相柠檬酸钠添加量增加,原位纳米杂化反渗透混合基质膜表面叶片状逐渐消失,并能在膜表面及断面观察到Mg(OH)2微小聚集颗粒,也说明了络合体系在界面聚合过程中能顺利扩散到功能分离层;经视频显微镜发现混合基质膜经原位杂化后出现了许多水聚集通道,增大了反渗透膜的水通量。混合基质膜的力学性能测试表明原位纳米杂化并不会降低膜的力学性能。络合体系原位纳米杂化制备反渗透混合基质膜的制备方法简单,为高通量反渗透膜的制备提供了一个新的方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号