首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用化学刻蚀法,在钠钙硅玻璃表面进行化学刻蚀.以正硅酸乙酯(TEOS)为前驱体制备纳米二氧化硅颗粒,以十六烷基三甲基溴化铵(CTAB)控制其团聚度,然后在化学刻蚀后的玻璃表面喷涂不同团聚度的纳米二氧化硅颗粒,构建多级微纳结构,进一步经全氟癸基三乙氧基硅烷(PFTS)修饰,获得超疏水玻璃表面.利用扫描电子显微镜、接触角测...  相似文献   

2.
利用层层自组装技术在玻璃表面上沉积二氧化硅纳米颗粒与聚苯乙烯球,高温烧结去除苯乙烯球后可在玻璃基底上构筑由二氧化硅纳米颗粒组成的阶层纳米粗糙微观结构,然后利用1H,1H,2H,2H-全氟癸基三乙氧基硅烷(FAS)进行表面疏水化处理制备透明超疏水表面,该表面与水的接触角高达166°。实验考察SiO2颗粒粒径对超疏水表面性能的影响并针对超疏水表面进行了扫描电镜、傅立叶变换红外光谱、接触角及热重表征。  相似文献   

3.
文章采用溶胶凝胶法将GPTM、TEOS、氟硅烷等前驱体通过表面烷基化来制备杂化超疏水涂层。通过多种实验表征手段对超疏水涂层进行分析,发现前驱体GPTM与TEOS摩尔比为2,氟硅涂层经8%TMCS正己烷溶液修饰后,可得到水接触角为153.54°,透光率为76.2%的透明超疏水涂层。  相似文献   

4.
以甲基三乙氧基硅烷(MTES)为前驱体,结合沸石咪唑酯骨架(ZIF-8),采用溶胶凝胶法制备了表面带甲基的SiO_2修饰ZIF-8(CH_3-SiO_2@ZIF-8)纳米粒子,经修饰剂γ-氨丙基三乙氧基硅烷(KH-550)改性后喷涂于玻璃表面,获得了超疏水涂层。微观形貌分析揭示了该涂层具有多孔结构。水滴在该涂层上的静态接触角达到(152±0.5)°,滚动角为(8±1.2)°。该涂层的可见光透过率达到90%以上。自清洁、喷水、防雾等试验的结果表明,该超疏水涂层难以被润湿,且具有良好的稳定性和防雾性。  相似文献   

5.
通过溶胶-凝胶法,以MTES(甲基三乙氧基硅烷)为前驱体,在玻璃纤维(玻纤)过滤膜表面直接进行水解缩合反应,制备具有高效油水分离功能的玻纤过滤膜材料。通过扫描电子显微镜和红外光谱分析MTES处理前后玻纤过滤膜的微观形貌与表面组成的变化,并通过接触角仪测试玻纤过滤膜的接触角,采用Karl Fischer水分仪测试玻纤过滤膜的油水分离效率。结果表明:经过MTES处理后,玻纤过滤膜的微观孔隙结构不变,而纤维表面布满疏水亲油的–CH3基团和纳米凸起结构,处理后的玻纤过滤膜有超疏水超亲油性能,玻纤过滤膜对乳化水的油水分离效率可以达到96.09%。  相似文献   

6.
利用高压静电纺丝构造聚乙烯–乙烯醇(EVOH)纤维膜,在纺丝过程中利用钛酸丁酯(TBT)–乙醇溶液通过纳米雾化原位水解制得TiO_2纳米粒子,并在成膜后利用丙基三甲氧基硅烷(TMPS)表面修饰TiO_2,通过这三种微观结构构筑方法的有机协同,制得EVOH/TiO_2–TMPS纤维膜。采用扫描电子显微镜、傅里叶变换红外光谱、紫外能谱和接触角测量仪,研究纤维膜的表面形貌、化学结构、紫外光吸收能力及疏水性能。结果表明,纳米雾化技术的复合效果显著,EVOH/TiO_2–TMPS纤维膜微结构化程度明显;TiO_2成功接枝TMPS,构造出疏水TiO_2纳米粒子;原位复合的TiO_2纳米粒子使纤维膜表现出优异的紫外光吸收能力;当TBT溶液浓度为0.1 mol/L时,EVOH/TiO_2–TMPS纤维膜的接触角达到153.4°,表明成功制备了超疏水纤维膜。  相似文献   

7.
孟艳芳 《精细化工》2020,37(7):1493-1500
以十六烷基三甲氧基硅烷与原硅酸四乙酯为原料,经溶胶-凝胶反应得到疏水硅烷纳米粒子,再将其加入到聚乳酸的二氯甲烷溶液中与硅烷偶联剂正丙氨基三乙氧基硅烷反应,得到一种具有优异防渗透性能的超疏水涂料。采用FTIR和SEM对涂料结构和形貌进行了表征。红外分析表明,硅烷偶联剂不参与化学反应。SEM表明,涂料的超疏水性源自表面多级拓扑结构。接触角测试表明,硅烷纳米粒子极大地提高了涂料的防水性,当硅烷纳米粒子用量为4%(以聚乳酸/二氯甲烷溶液总质量计)时,超疏水涂料的水接触角达到150°以上;在10~20min测试时间内,相对于单一疏水硅烷纳米粒子〔接触角降速150(°)/min〕和单一聚乳酸溶液〔接触角降速9.5(°)/min〕涂覆,疏水硅烷纳米粒子/聚乳酸复合防水涂料的涂覆大幅度提高了样品的防渗透性,接触角降速仅为0.8(°)/min,这是疏水硅烷纳米粒子的多级结构与聚乳酸优异的成膜性相结合的结果。  相似文献   

8.
段辉  汪厚植  熊征蓉  赵雷  顾华志 《化工进展》2006,25(11):1320-1323
在醇溶性氟化聚合物(FR)溶液中,以正硅酸乙酯(TEOS)和甲基三乙氧基硅烷(MTES)为前体,并掺杂聚四氟乙烯(PTFE),在酸性和水量不足的条件下,得到了均匀的复合溶胶。涂敷后,经表面凝胶化技术处理,使涂层表面得到微米级PTFE粒子和纳米级SiO2粒子相结合的微米纳米阶层结构。XPS证实了凝胶化只在涂层表面发生,SEM观察到涂层表面的形貌与荷叶表面极其相似,该方法可用于制备超疏水性功能涂层材料。  相似文献   

9.
本文以Stober法制备的胶体SiO2粒子与粉体SiO2粒子结合的SiO2复合粒子在玻璃基底构建粗糙表面,以三乙氧基甲基硅烷(MTES)与正硅酸乙酯(TEOS)为前聚体制备的酸性有机硅低聚物作为粘接剂,使用偶联剂KH540与氟硅烷PFDT进行改性,通过喷涂法在玻璃基底上制备出SiO2复合粒子/酸性有机硅低聚物复合透明超疏水涂层,然后探究SiO2复合粒子、酸性有机硅低聚物、偶联剂KH540以及氟硅烷PFDT对复合涂层的影响。研究表明:当SiO2复合粒子由粒径为110 nm的胶体SiO2粒子与粒径为50 nm的粉体SiO2粒子两种粒子组成,SiO2复合粒子溶液与酸性有机硅稀释液的混合质量比为4:1,添加偶联剂KH540与氟硅烷PFDT的质量比为混合液的1%时,复合涂层在可见光波长范围内透光率可达88%,静态接触角能达155°,在800目砂纸上磨损60 cm后仍能保持超疏水性能,具有良好的自清洁性,为透明超疏水涂层的制备提供一种简便、低成本方案。  相似文献   

10.
采用阳极氧化工艺在Ti6A14V钛合金表面制备阳极氧化膜作为过渡层,然后喷涂Si O2颗粒溶胶烘烤使其固化成膜,再通过正辛基三乙氧基硅烷表面修饰,制备出具有微纳米表面结构、接触角为151.6°的超疏水膜。结果表明:超疏水膜的主要成分为Ti、O、Si和C元素,腐蚀电流密度仅为8.06×10-8 A/cm2,较裸钛合金降低约一个数量级,并且电荷转移电阻和低频阻抗模值较裸钛合金分别增大约7000Ω·cm2、3000Ω·cm2,表现出良好的耐蚀性,可作为耐腐蚀膜层对钛合金起到防护作用。超疏水膜经受80次落砂冲击、50次胶带剥离以及沿砂纸往复摩擦400 cm后,接触角仍然大于150°,保持超疏水状态。蜂窝状多孔结构的阳极氧化膜充当过渡层,使溶胶膜和表面修饰形成的薄膜与钛合金基体牢固结合,从而表现出良好的机械稳定性。  相似文献   

11.
李倩  徐丽慧  沈勇  程洋 《硅酸盐通报》2016,35(3):772-778
本文利用纳米TiO2粉体,以聚乙烯吡咯烷(PVP)为分散剂和结构引导剂,以正硅酸乙酯(TEOS)为纳米SiO2前驱体,在纳米TiO2粉体表面包覆纳米SiO2,制备纳米TiO2-SiO2复合粒子.将纳米TiO2-SiO2复合粒子整理到棉织物上,并通过十六烷基三甲氧基硅烷(HDTMS)低表面能修饰后,得到抗紫外和超疏水复合功能棉织物.探究制备纳米TiO2-SiO2复合粒子的最佳工艺,并对复合粒子和处理后棉织物进行表征.结果表明,当PVP用量为0.025%,硅钛比例为2∶1,氨水用量为5mL时,纳米SiO2包覆TiO2效果较好.处理棉织物的抗紫外指数(UPF)达115.42,紫外线UVA(320~420 nm)透过率为3.35%,接触角为156.54°,滚动角为8°,具有优异的抗紫外、超疏水性能.此外,处理棉织物经过24h紫外线照射后,接触角仍为152.73°,滚动角仍可达到9°,实现了耐紫外线稳定性.  相似文献   

12.
以正硅酸四乙酯、3-缩水甘油基氧基丙基三甲氧基硅烷、全氟癸基三乙氧基硅烷、纳米硅溶胶等为原料制备了低表面能的纳米复合涂层,并对涂层的热稳定性和表面性能进行了测试。热重分析结果表明,涂层热稳定性高,其最大热失重温度为522℃;扫描电镜照片显示涂层表面光滑致密,无微孔开裂;涂层具有良好的疏水疏油性,水接触角达111.2°,乙二醇、二甲苯、植物油无法在其表面铺展,涂层的表面能为18.82 mN·m~(-1);点蚀试验结果显示,浓盐酸24 h未能腐蚀涂层,同时涂层显示出极佳的防涂鸦耐沾污性。  相似文献   

13.
采用γ-氨丙基三乙氧基硅烷(KH550)对纳米ZnO粉末进行分散,然后加入全氟辛基三甲氧基硅烷改性纳米ZnO,再与水性聚氨酯共混一次喷涂在铝基板上喷涂成膜的方法制备出了具有优良的耐磨性、防腐蚀性的超疏水涂层。此工艺操作简单,制备的超疏水涂层与铝基板粘结紧密,涂层表面微纳结构较小,表面完整光滑。应用FTIR、XPS、SEM、超疏水性能测试设备等手段对涂层进行表征。结果表明,全氟辛基三甲氧基硅烷含量为纳米ZnO的10%wt,KH550为5%wt时,涂层接触角可达到165°,滚动角7. 5°,其超疏水性能最好,且具有的良好的稳定性和防腐蚀性能。  相似文献   

14.
采用简单的水热方法制备出纯净且粒径均匀的纳米Zn O粒子,借助于X射线粉末衍射仪(XRD)和扫描电子显微镜(SEM)对其物相组成及表面形貌进行了表征,通过日光下亚甲基蓝的降解研究了其光催化性能。将获得的ZnO纳米粒子沉积成膜,经表面修饰低表面能物质1H,1H,2H,2H-全氟辛基三氯硅烷(CAS)后,采用接触角测量仪研究了其润湿性能。结果表明,反应时间为20 h的ZnO纳米粒子在日光照射20 min后,亚甲基蓝的降解率达到90%以上;经表面修饰CAS后,Zn O膜呈现良好的疏水性能;经紫外光照射后,疏水性ZnO膜转换为亲水性,实现了润湿性的转换。  相似文献   

15.
采用正硅酸四乙酯(TEOS)以溶胶-凝胶法制备了粒径为100 nm的二氧化硅溶胶颗粒,以氨丙基三乙氧基硅烷(KH-550)、γ-二乙烯三胺丙基甲基二甲氧基硅烷(KH-603)作为纳米颗粒团聚体和附着力促进剂,使用十六烷基三甲氧基硅烷(HDTMS)对二氧化硅溶胶进行疏水处理得到改性溶胶颗粒,再以热塑性聚氨酯(TPU-95A)树脂为粘结剂,制备超疏水复合涂层。采用静态接触角(CA)、红外光谱(FT-IR)、粒径分布、透射电镜(TEM)对改性颗粒和涂层进行表征。结果表明:当KH-550与KH-603质量比为7∶3,TEOS与TPU-95A质量比为27.76∶1时,水滴在超疏水复合涂层的静态接触角高达152°,将此材料运用在真石、质感涂料上能够赋予涂层超疏水特性,使涂层具备耐沾污自清洁的功能。  相似文献   

16.
采用静电纺丝法制备聚偏氟乙烯(PVDF)纳米纤维膜,并以此膜和和商品膜HVHP4700为基膜,通过在其表面先覆盖二氧化钛、再覆盖十二烷基三氯硅烷进行改性,得到超疏水表面。对改性后的超疏水纳米纤维膜进行了表征和性能评价、膜蒸馏实验。结果表明,在较小的纺丝液推注速度下,制备的纳米纤维膜具有较适宜的厚度、孔径、液体入口压力和孔隙率。改性后2种膜的接触角均大于150°,抗润湿性能显著提高。改性前后PVDF纳米纤维膜的产水通量均高于改性前后的HVHP4700膜,4种膜的产水电导率均低于5μS/cm,脱盐率高于99.99%。  相似文献   

17.
采用溶胶-凝胶法,以正硅酸乙酯(TEOS)和甲基三乙氧基硅烷(MTES)为前驱体、硅丙树脂为成膜物质,制备了有机-无机杂化超疏水材料.在对用该材料获得超疏水涂层的研究中,考察了硅丙树脂的含量,比值n(MTES)/n(TEOS)、n(C_2H_5OH)/n(TEOS)和n(NH_3·H_2O)/n(TEOS)对涂层性能的影响.测试结果表明,当硅丙树脂加入量占总物料量的25%(质量分数),摩尔比n(TEOS)∶n(MTES)∶n(C_2H_5OH)∶n(NH_3·H_2O)为1∶4∶30∶10时,涂层具有良好的疏水性和均匀的外观结构,涂层静态水接触角可达156°.  相似文献   

18.
通过在基材表面喷涂环氧树脂作为黏合剂,然后喷涂炭黑纳米粒子、聚二甲基硅氧烷(PDMS)以及十七氟癸基三乙氧基硅烷(PFDTES)的共混液制备了一种炭黑/PDMS光热超疏水涂层.炭黑纳米粒子提供光热性能并使涂层具有微纳粗糙结构,结合PFDTES较低的表面能使涂层获得超疏水性能.制备涂层表面的水滴接触角高达161?,滚动角低至1.4?,呈现优异的超疏水性能,从而使水滴在玻璃表面结冰的时间由30 s延迟到160 s.涂层中炭黑所提供的光热转换效应使其表面的冰在太阳光照射下能迅速融化,并随自重自动脱落.此外,涂层的自清洁性能可防止表面在户外应用时遭受污染,有利于保护涂层的光热转换性能和长期光热除冰功能.  相似文献   

19.
袁震  李晓龙  高雅文  颜峰 《广东化工》2015,42(4):144-145
在文章中,我们首先通过水相共沉淀的方法制备超顺磁性四氧化三铁(Fe3O4)纳米粒子,分别采用油酸(OA)和十八烷基三甲基硅烷(C18TMS)对Fe3O4纳米粒子进行疏水化修饰,通过透射电镜、红外光谱、接触角、紫外光谱和振动磁强计等表征手段表征疏水化修饰效果。研究发现OA和C18TMS都能对Fe3O4纳米粒子进行疏水化修饰,修饰后的Fe3O4纳米粒子粒径并没有明显的变化,而C18TMS修饰的Fe3O4纳米粒子展示更高的疏水性能和饱和磁化强度,在有机溶剂中具有更高的稳定性。  相似文献   

20.
以TEOS(硅酸乙酯)为前驱体,MTES(甲基三乙氧基硅烷)为有机改性剂,Triton(R)X-100为模板剂,用酸催化溶胶-凝胶法制备了多孔二氧化硅增透膜.探讨了不同量的MTES对薄膜结构和性能的影响.结果表明:随着MTES用量的增加,减反射膜的疏水性增大,接触角由11°增加到93°,当MTES含量较低时(MTES与TEOS摩尔比0∶1),减反膜中孔结构的孔径大部分在20~30 nm,当MTES与TEOS摩尔比为1∶2时,20~30 nm孔径的孔结构比例增加,并出现孔径为30~40 nm的孔结构分布峰,当MTES含量进一步增加(MTES与TEOS摩尔比2∶1时),20~30 nm孔径的孔结构进一步增加,30~40 nm孔径的孔结构含量下降.减反膜抗凝聚性能先增强后减弱,MTES与TEOS的摩尔比从0增加到1∶2时,透过率变化量由2.1%减小0.12%,当MTES进一步增加(MTES/TEOS比=2∶1)时,减反膜透过率变化量又增加到0.34%.与涂层表面的疏水性相比,MTES的含量引起的涂层内部的孔结构大小变化对减反射涂层的抗冷凝性能影响更大,当MTES与TEOS的摩尔比为1∶2时,涂层达到最佳性能:透过率为5.58%,耐磨性能为0.25%,抗冷凝性能为0.12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号