首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium montmorillonite (Ca-MMT), sodium montmorillonite (Na-MMT) and acid-activated montmorillonite (AAM), and their Cu2+-exchanged montmorillonites (Cu-MMT), Cu*Ca-MMT, Cu*Na-MMT and Cu*AAM, were used to study the antibacterial activity on Escherichia coli K88. AAM, Na-MMT and Ca-MMT showed some ability to reduce bacterial plate counts by 37.4%, 13.4% and 14.2%, respectively. Exchanging the montmorillonite with Cu2+ enhanced the antibacterial activity. The Cu*AAM, Cu*Na-MMT and Cu*Ca-MMT reduced the bacterial plate counts by 98.6%, 97.5% and 95.6%. Attempts were made to study the desorption of Cu2+ by washing with sterile physiological saline solution for 24 h. The washing solutions did not show a significant reduction of the bacterial counts, while the washed Cu-MMT retained their full antibacterial activity. Results from time-depending studies showed that the reduction of the bacterial counts by Cu-MMT increased during 24 h. The ranking of antibacterial activity of the three Cu-MMT was as Cu*AAM > Cu*Na-MMT > Cu*Ca-MMT. E. coli thrived optimally in a pH range from 5 to 7. Beyond this range, the bacterial counts decreased as the pH reduced the viability of the bacteria. The ranking of antibacterial activity of Cu-MMT was not affected by pH. The mechanism by which bacterial counts are reduced may involve the enhanced affinity of Cu-MMT for E. coli K88 and the antibacterial activity of Cu2+.  相似文献   

2.
Phenol-soluble modulins (PSMs) are a large family of cytolytic peptide toxins produced by Staphylococcus aureus. Based on their amino acid sequences, we have constructed a small library of cationic isoleucine-rich peptides for antimicrobial evaluation. Relative to the parent PSMs, peptide zp3 (GIIAGIIIKIKK-NH2) was found to possess greatly improved physicochemical properties (soluble in water) and antibacterial activity (MIC=8 μm for E. coli, B. subtilis, and C. freundii) while maintaining low hemolytic activity (<5 % at 256 μm ) and cytotoxicity (HEK293 cells IC50>80 μm ). We reasoned that the selective activity of zp3 toward bacterial cells is due to its amphiphilic nature and positive net charge. Moreover, it is difficult for bacteria to develop resistance against zp3 . Through microscopic studies of E. coli, we demonstrated that zp3 can penetrate the bacterial membrane, thereby causing leakage of the bacterial cytoplasm. Our findings present a promising antimicrobial peptide lead, which has great potential for further chemical modification.  相似文献   

3.
A series of (NHC)Au(I)Cl monocarbene complexes and their gold(III) analogues (NHC)Au(III)Cl3 were prepared and investigated as antibacterial agents and inhibitors of bacterial TrxR. The complexes showed stronger antibacterial effects against the Gram-positive MRSA and E. faecium strains than against several Gram-negative bacteria. All complexes were efficient inhibitors of bacterial thioredoxin reductase, indicating that inhibition of this enzyme might be involved in their mechanism of action. The efficacy of gold(I) and gold(III) analogues was comparable in most of the assays. The cytotoxicity of the gold NHC compounds against cancer and human cells was overall weaker than the activity against the Gram-positive bacteria, suggesting that their optimization as antibacterials warrants further investigation.  相似文献   

4.
Y Luo  LR Zhang  Y Hu  S Zhang  J Fu  XM Wang  HL Zhu 《ChemMedChem》2012,7(9):1587-1593
Forty‐three oxime derivatives were synthesized by allowing O‐benzylhydroxylamines to react with primary benzaldehydes or salicylaldehydes; these products were gauged as potential inhibitors of β‐ketoacyl‐(acyl‐carrier‐protein) synthase III (FabH). Among the 43 compounds, 38 are reported herein for the first time. These compounds were assayed for antimicrobial activities against Escherichia coli, Pseudomonas aeruginosa, Pseudomonas fluorescens, Bacillus subtilis, Staphylococcus aureus, and Enterococcus faecalis. Compounds with prominent antibacterial activities were tested for their E. coli FabH inhibitory activities. 3‐((2,4‐Dichlorobenzyloxyimino)methyl)benzaldehyde O‐2,4‐dichlorobenzyl oxime ( 44 ) showed the best antibacterial activity, with minimum inhibitory concentrations of 3.13–6.25 μg mL?1 against the tested bacterial strains, exhibiting the best E. coli FabH inhibitory activity, with an IC50 value of 1.7 mM . Docking simulations were performed to position compound 44 into the E. coli FabH active site in order to determine the most probable binding conformation.  相似文献   

5.
The photocatalytic inactivation of Escherichia coli under visible light irradiation (λ > 420 nm) was performed with Bi2WO6 to investigate the photocatalytic bactericidal capability. Our work shows that the single phase oxide photocatalyst Bi2WO6 is effective in photocatalytic inactivation on E. coli. And the results revealed that the photocatalytic inactivation rate of E. coli with Bi2WO6 followed pseudo-first-order kinetics. The bactericidal action was directly observed by TEM and further proved by the measurement of K+ leakage from the inactive E. coli through the ICP-OES analysis. The results demonstrated that the photocatalysis could cause drastic damage in E. coli cells.  相似文献   

6.
Preparation of bis-aminothiazoles under different conditions including synthesis in EtOH under ultrasound irradiation and also in water in the presence of Fe(SD)3 as Lewis acid-surfactant-combined catalyst (LASC) under ultrasound irradiation has been studied. The results were compared with the traditional reflux method. Also, the results confirmed the efficiency of the synthesis in water and under ultrasound irradiation technique. Moreover, the antibacterial activity of products was investigated using the well-diffusion method against bacterial strains including Micrococcus luteus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis. All of the products showed good antibacterial activity against M. luteus and E. coli. Most of the products showed antibacterial activity higher than erythromycin against M. luteus, E. coli, and B. subtilis.  相似文献   

7.
Silver nanoparticles were obtained by chemical reduction of silver nitrate in water with sodium borohydride (NaBH4) in the presence of SDS (sodium dodecyl sulfate) as a stabilizer. The synthesized silver nanoparticles were characterized by UV-vis spectroscopy (UV-vis) and transmission electron microscopy (TEM). The formation of silver nanoparticles was confirmed from the appearance of surface plasmon absorption maxima at 400 nm by UV-vis. TEM showed the spherical nanoparticles with size in 10–20 nm. The antibacterial activity of silver nanoparticles was tested by using Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coil (E. coli). The silver nanoparticles, whose bacterial activity was dependent on the aggregation degree between particles, exhibited bacterial activity against S. aureus and E. coli.  相似文献   

8.
The BaTiO3 powder was prepared via a solid-state reaction route. It was studied for the degradation of bacterial cells, dye, and pharmaceuticals waste using ultrasonically driven piezocatalytic effect. The bacterial catalytic behavior of poled BaTiO3 was remarkably increased during ultrasonication (10% E coli survival in 60 minutes). The structural damages were illustrated using scanning electron micrographs of bacterial cells which demonstrated morphological manifestations under different conditions. Methylene blue (MB dye), ciprofloxacin and diclofenac were also cleaned using the piezocatalytic effect associated with the poled BaTiO3 powder. Around 92, 85, and 78% of degradations were observed within 150 minutes duration for methylene blue, ciprofloxacin, and diclofenac, respectively.  相似文献   

9.
BACKGROUND: Ballast water discharge from ships is regarded as one of the four major risk factors that threaten global marine environmental safety, and ballast water treatment is vital to prevent the introduction of potentially invasive species. The UV/Ag? TiO2/O3 process has been investigated for its potential use for ballast water treatment using Escherichia coli (E. coli) as an indicator bacterium. Inactivation curves were obtained, and the occurrence of oxidants was studied. RESULTS: Compared with individual unit processes with ozone or UV/Ag? TiO2, the inactivation of E. coli by the combined UV/Ag? TiO2/O3 process was enhanced, and the inactivation efficiency was improved with increasing ultraviolet intensity and ozone dose. The initial total residual oxidant (TRO) concentration was positively correlated with ozone dose, and resulted in faster decay rate for lower initial concentration. Persistence of TRO resulted in a cumulative bacteria mortality in the effluent. CONCLUSION: The UV/Ag? TiO2/O3 process was found to be efficient for E. coli inactivation in simulated ballast water. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
ATP‐competitive inhibitors of DNA gyrase and topoisomerase IV are among the most interesting classes of antibacterial drugs that are unrepresented in the antibacterial pipeline. We developed 32 new N‐phenylpyrrolamides and evaluated them against DNA gyrase and topoisomerase IV from E. coli and Staphylococcus aureus. Antibacterial activities were studied against Gram‐positive and Gram‐negative bacterial strains. The most potent compound displayed an IC50 of 47 nm against E. coli DNA gyrase, and a minimum inhibitory concentration (MIC) of 12.5 μm against the Gram‐positive Enterococcus faecalis. Some compounds displayed good antibacterial activities against an efflux‐pump‐deficient E. coli strain (MIC=6.25 μm ) and against wild‐type E. coli in the presence of efflux pump inhibitor PAβN (MIC=3.13 μm ). Here we describe new findings regarding the structure–activity relationships of N‐phenylpyrrolamide DNA gyrase B inhibitors and investigate the factors that are important for the antibacterial activity of this class of compounds.  相似文献   

11.
Metal based drug represents a novel group of antimicrobial agents with potential application for the control of bacterial and fungal infections. In this study, we fabricate ruthenium(II) complex containing the polypyridyl ligands, namely [Ru(phen)2(tip)] (ClO4)2 (RuTh) and carefully investigate its antibacterial activities against both the Gram-negative (G −) bacteria Escherichia coli (E. coli) and the Gram-positive (G +) bacteria Staphylococcus aureus (S. aureus). The RuTh is more toxic to S. aureus than that to E. coli. The antibacterial effects of RuTh are further investigated, revealing specific mechanisms. The results demonstrate that RuTh functions as a bactericide against the E. coli and S. aureus through disrupting bacterial cell wall integrity and its cellular components.  相似文献   

12.
Seven kind of graft copolymerization Konjac Glucomannan with quaternary ammonium group have been prepared, using Konjac Glucomannan (KGM) and methacryloxylethyl alkyl dimethyl ammonium bromide with c8–c18 alkyl and benzyl in water, ceric ammonium nitrate as initiator, the reaction temperature of 348 K, and the reaction period of 3 h. The structures were confirmed by FTIR. The 15 min inhibitory rates of all the graft copolymerization KGM against Escherichia coli and Staphylococcus aureus reached 99.99%, against Candida albicans somewhat lower, but 30 min inhibitory rate still reached 99.02% for graft copolymerization KGM with quaternary ammonium group having 14 alkyl. The antibacterial mechanism of the graft copolymerization KGM has been investigated by adsorption ability to E. coli, measure of 260 nm absorbing materials and SEM micrographs. Firstly, the bacteria were fastly adsorbed by graft copolymerization KGM. Interactions between bacterial membranes and antibacterial product cause fundamental changes in both membrane structure and function, induced leakage of cytoplasmic contents is a classic indication of damage to the bacterial cytoplasmic membrane. The loss of the connection between the outer membrane and the underlying peptidoglycan induces the abnormality of nodular structures and bleb formation of the cell envelope of E. coli. The antibacterial mechanism is in accordance with microbiologic findings identifying surface blebbing as the first morphologic change occurring in the permeability barrier of gram‐negative bacteria under mild heat stress and laser irradiation, etc. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
In this study, double norfloxacin skeletons including the target armed molecules (DNs) displaying antibacterial and anticorrosion properties for copper in aqueous solutions were presented. The molecular modelling and material simulation calculations suggest that the target molecules could be adsorbed to copper surface, which was further demonstrated by attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The experimental results show that the copper surface which adsorbed the target armed molecules exhibited an excellent inhibitory effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The potentiodynamic polarization plots and electrochemical impedance spectroscopy demonstrate that the DNs of 0.100 mM achieved over 95% corrosion inhibition efficiency for copper in 0.5 M H2SO4 solution at 298 K. The results given in this study may guide us to achieve bacterial and corrosion resistances for copper based on the drug-included armed molecules.  相似文献   

14.
15.
The respiratory chain of Escherichia coli contains two different types of terminal oxidase that are differentially regulated as a response to changing environmental conditions. These oxidoreductases catalyze the reduction of molecular oxygen to water and contribute to the proton motive force. The cytochrome bo3 oxidase (cyt bo3) acts as the primary terminal oxidase under atmospheric oxygen levels, whereas the bd-type oxidase is most abundant under microaerobic conditions. In E. coli, both types of respiratory terminal oxidase (HCO and bd-type) use ubiquinol-8 as electron donor. Here, we assess the inhibitory potential of newly designed and synthesized 3-alkylated Lawson derivatives through L-proline-catalyzed three-component reductive alkylation (TCRA). The inhibitory effects of these Lawson derivatives on the terminal oxidases of E. coli (cyt bo3 and cyt bd-I) were tested potentiometrically. Four compounds were able to reduce the oxidoreductase activity of cyt bo3 by more than 50 % without affecting the cyt bd-I activity. Moreover, two inhibitors for both cyt bo3 and cyt bd-I oxidase could be identified. Based on molecular-docking simulations, we propose binding modes of the new Lawson inhibitors. The molecular fragment benzyl enhances the inhibitory potential and selectivity for cyt bo3, whereas heterocycles reduce this effect. This work extends the library of 3-alkylated Lawson derivatives as selective inhibitors for respiratory oxidases and provides molecular probes for detailed investigations of the mechanisms of respiratory-chain enzymes of E. coli.  相似文献   

16.
Piperazine polymers poly(ethylenediaminetetraacetic dianhydride-co-piperazine) (PE) and MGF-Ct24E-modified poly(ethylenediaminetetraacetic dianhydride-co-piperazine) (PEM) showed good antibacterial activity. Considering their different applications, the effects of time, pH, and inoculation concentration of these antibacterials against Escherichia coli (E. coli) in unique environments were evaluated in this study. The results indicated that the MIC and MBC values of the polymers increased after the introduction of MGF-Ct24E into PE, but the two types of polymers still exhibited good antibacterial activity in a short time period under acidic conditions. In addition, we investigated the effect of the piperazine polymers on bacterial cell structure. It was clear that PE and PEM could destroy the bacterial cell wall, cell membrane and DNA, and their specific mechanism may be different. For PE, its carboxyl group could react with peptidoglycans on the E.coli cell wall to form holes on the bacterial surface, allowing PE to penetrate into the bacterial cell to damage DNA. For PEM, the alkaline MGF-Ct24E could adsorb E.coli and make it shrink, meanwhile, the PE component created small holes on the bacterial walls and membranes, and inserted into the bacteria to result in bactericidal effect. These findings reveal the potential usefulness of PE and PEM in biomedical applications.  相似文献   

17.
Dual‐function silica–silver core‐shell (SiO2@Ag) nanoparticles (NPs) with the core diameter of 17 ± 2 nm and the shell thickness of about 1.5 nm were produced using a green chemistry. The SiO2@Ag NPs were tested in vitro against gram‐positive Staphylococcus aureus (S. aureus) and gram‐negative Escherichia coli (E. coli), both of which are human pathogens. Minimal inhibitory concentrations of the SiO2@Ag NPs based on Ag content are 4 and 10 μg mL?1 against S. aureus and E. coli, respectively. These values are similar to those of Ag NPs. SiO2@Ag NPs were for the first time incorporated to a commodity polypropylene (PP) polymer. This yielded an advanced multifunctional polymer using current compounding technologies i.e., melt blending by twin‐screw extruder and solvent (toluene) blending. The composite containing 5 wt % SiO2@Ag NPs (0.05 wt % Ag) exhibited efficient bactericidal activity with over 99.99% reduction in bacterial cell viability and significantly improved the flexural modulus of the PP. Anodic stripping voltammetry, used to investigate the antibacterial mechanism of the composite, indicated that a bactericidal Ag+ agent was released from the composite in an aqueous environment. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Sepsis leads to hypertriglyceridemia in both humans and animals. Previously, we reported that plasma very low density lipoprotein apolipoprotein (apo) B and hepatic production of apoB increased during Escherichia coli sepsis. The present experiments were undertaken to determine whether the altered hepatic secretion of apoB was associated with an increase in synthesis or a decrease in degradation rate. Sepsis was induced in male, Lewis rats (225–275 g) by intravenous injection of 3.8×108 live E. coli colonies/100 g body. Twenty-four hours later rats were sacrificed, and primary hepatocytes were prepared and incubated overnight with 35S-methionine. Hepatocytes from E. coli-treated rats secreted twice as much apoB-48 and total apoB than the hepatocytes from control rats. Escherichia coli sepsis increased celular triglyceride mass by 86%, which was due to a stimulation in triglyceride synthesis from newly synthesized fatty acids, measured by 3H2O incorporation into triglycerides. The apoB synthesis rate, apoB mRNA levels, and apoB mRNA editing were not altered during E. coli sepsis. The pulse-chase experiments showed that the rate of apoB degradation decreased in E. coli-treated rats. These findings demonstrate that the secretion of apoB is regulated posttranslationally during E. coli sepsis by decreasing the degradation of newly synthesized apoB, which contributes to the development of hypertriglyceridemia.  相似文献   

19.
We describe the convergent synthesis of a 5-O-β-D-ribofuranosyl-based apramycin derivative (apralog) that displays significantly improved antibacterial activity over the parent apramycin against wild-type ESKAPE pathogens. In addition, the new apralog retains excellent antibacterial activity in the presence of the only aminoglycoside modifying enzyme (AAC(3)-IV) acting on the parent, without incurring susceptibility to the APH(3’) mechanism that disables other 5-O-β-D-ribofuranosyl 2-deoxystreptamine type aminoglycosides by phosphorylation at the ribose 5-position. Consistent with this antibacterial activity, the new apralog has excellent 30 nM activity (IC50) for the inhibition of protein synthesis by the bacterial ribosome in a cell-free translation assay, while retaining the excellent across-the-board selectivity of the parent for inhibition of bacterial over eukaryotic ribosomes. Overall, these characteristics translate into excellent in vivo efficacy against E. coli in a mouse thigh infection model and reduced ototoxicity vis à vis the parent in mouse cochlear explants.  相似文献   

20.
The current study compares the antibacterial activity of zinc oxide nanostructures (neZnO). For this purpose, two bacterial strains, Escherichia coli (ATCC 4157) and Staphylococcus aureus (ATCC 29213) were challenged in room light conditions with the aforementioned materials. Colloidal and hydrothermal methods were used to obtain the quasi-round and quasi-diamond platelet-shape nanostructures. Thus, the oxygen vacancy (VO) effects on the surface of neZnO are also considered to assess its effects on antibacterial activity. The neZnO characterization was achieved by X-ray diffraction (XRD), a selected area electron diffraction (SAED) and Raman spectroscopy. The microstructural effects were monitored by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Furthermore, optical absorption ultraviolet visible spectrophotometry (UV-Vis) and X-ray photoelectron spectroscopy (XPS) analyses complement the physical characterization of these nanostructures; neZnO caused 50 % inhibition (IC50) at concentrations from 0.064 to 0.072 mg/mL for S. aureus and from 0.083 to 0.104 mg/mL for E. coli, indicating an increase in activity against S. aureus compared to E. coli. Consequently, quasi-diamond platelet-shaped nanostructures (average particle size of 377.6±10 nm) showed enhanced antibacterial activity compared to quasi-round agglomerated particles (average size of 442.8±12 nm), regardless of Vo presence or absence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号