首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
合成了硅氧烷杂化苯并恶嗪热固性树脂(SiBOZ),对其分子结构、热固化过程和层压复合材料的力学性能与耐热性能进行了表征。结果表明:SiBOZ较双酚A型苯并恶嗪粘度低,固化区间相近,固化峰值高(约为246.5℃)。SiBOZ固化物900℃的残炭率为53%,远高于双酚A型苯并恶嗪的残炭率31%。SiBOZ石英布增强层压板复合材料的室温弯曲强度(512 MPa)比双酚A型苯并恶嗪(812 MPa)低,但随着温度升高弯曲强度的衰减要慢得多,300℃时SiBOZ复合材料弯曲强度保持率37.2%,而双酚A型苯并恶嗪复合材料仅保持5.7%、接近失效。  相似文献   

2.
采用硅烷偶联剂γ-氨丙基三乙氧基硅烷(KH550)对埃洛石纳米管(HNTs)进行表面改性,制得了改性埃洛石(mHNTs),并利用红外光谱和热重分析对其表征,测得KH550在埃洛石上的接枝率为6%。通过溶剂法合成了苯胺型苯并噁嗪单体(BOZ),然后将mHNTs分散在BOZ中,得到了改性埃洛石掺杂质量分数为0、1.7%、5%、7%、10%的5种埃洛石型苯并噁嗪体系,依次为1-BOZ、2-BOZ、3-BOZ、4-BOZ、5-BOZ。用红外光谱、热重分析和扫描电镜对其进行了表征。结果表明:mHNTs均匀地分散在单体中,提高了苯胺型苯并噁嗪的耐热性和热稳定性,固化温度也明显地降低。其中mHNTs的添加量为7%时,残炭率提高了8%,热分解温度升高了7℃,固化温度降低了10.6℃。  相似文献   

3.
为了提高玻璃纤维布/苯并噁嗪树脂复合材料的低温力学性能,以氧化丙烯共聚二醇为改性剂,采用溶液共混改性的方法,制得了改性苯并噁嗪树脂。通过扫描电镜(SEM)分析、傅立叶红外变换吸收光谱(FT-IR)、以及热失重分(TGA)研究了氧化丙烯共聚二醇对树脂基体的微观形貌、改性机制和热稳定性的影响,并以万能力学试验机测试了复合材料的力学性能。研究发现:加入氧化丙烯共聚二醇使树脂韧性明显提高,同时使复合材料的力学性能显著提高,当氧化丙烯共聚二醇的加入量为20%(质量分数)时,复合材料在25℃和-70℃时的层间剪切强度分别提高了27.9%和32.1%,弯曲强度分别提高了12.2%和44.2%,弯曲模量分别提高了17.6%和22.9%,但热稳定性略有降低。  相似文献   

4.
研究了纳米SiO2含量对苯并恶嗪树脂(BOZ)/双马来酰亚胺(BMI)/双酚A型氰酸酯(BADCy)/纳米SiO2复合材料力学性能、热性能和吸水性能的影响。结果表明,当纳米SiO2质量分数为3%时,BOZ/BMI/BADCy/纳米SiO2复合材料具有较高的强度和良好的韧性,其缺口冲击强度和弯曲强度比BOZ/BMI/BADCy共聚物分别提高了11.6%和8.5%;同时,纳米SiO2质量分数为3%时BOZ/BMI/BADCy/纳米SiO2复合材料具有优异的耐热性,其初始热分解温度和最大热分解温度分别为343.2℃和430.3℃。  相似文献   

5.
PA66/TLCP/HNTs纳米管复合材料的制备与性能   总被引:2,自引:0,他引:2  
采用熔融共混方法制备了尼龙(PA)66/热致液晶聚合物(TLCP)/埃洛石纳米管(HNTs)复合材料,研究了其热性能、微观形态及力学性能.结果表明,当TLCP的质量分数为4%、HNTs的质量分数为15%时,复合材料的综合性能最佳.其拉伸强度、拉伸弹性模量、弯曲强度及弯曲弹性模量相比纯PA66分别提高了30.4%、76.9%、34.4%、91.7%.熔体的加工流动性得到改善,PA66/TLCP/HNTs复合材料的吸水性能明显降低.少量的TLCP有利于提高PA66/TLCP复合材料的结晶性能和熔融温度;HNTs的加入能提高复合材料的结晶温度,与基体有较好的界面结合;TLCP及HNTs能在基体中均匀地分散,TLCP在PA66/TLCP/HNTs复合材料中形成微纤结构,且沿纤维轴方向取向.  相似文献   

6.
聚芳醚腈增韧改性苯并恶嗪树脂性能研究   总被引:2,自引:0,他引:2  
通过溶液共混及流延法制备了聚芳醚腈(PEN)/苯并恶嗪(B-z)树脂及其固化膜,采用差示扫描量热仪,热重分析,力学性能测试及扫描电镜观察研究了其耐热性能、力学性能及形貌特征,阐述了其微观结构与性能之间的关系。结果表明,聚芳醚腈对苯并恶嗪有明显的增韧增强作用,提高了苯并恶嗪的耐热性,聚芳醚腈的质量分数达到15%时,共聚物800℃下残炭率高达62.13%,比纯苯并恶嗪提高了20%。在保证弹性模量不降低的前提下,拉伸强度,断裂伸长率均有提高。  相似文献   

7.
为了提高苯并嗯嗪树脂的性能,使用液态聚硫橡胶对苯并嗯嗪树脂进行了改性研究。实验将不同配比的聚硫橡胶与苯并嚼嗪树脂进行共混并固化,利用傅立叶红外光谱(FTIR)、差示扫描量热法(DSC)、动态热机械分析仪(DMTA)分析了共混体系的结构、固化行为和玻璃化转变,测定了共混体系的热失重和冲击强度,分析比较了不同聚硫橡胶含量共混体系的结构、热性能和力学性能。结果表明改性苯并嗯嗪树脂的热性能和力学性能均得到不同程度的改善。得出如下结论:使用液态聚硫橡胶改性苯并嗯嗪树脂时,当聚硫橡胶加入量为5份(苯并嗯嗪树脂为100质量份)时,得到的改性树脂和纯嗯嗪树脂相比,韧性和热稳定性有显著提高,玻璃化转变温度也略有提高,复合材料的综合性能最好。  相似文献   

8.
采用熔融缩聚法合成了烯丙基苯并恶嗪(Boz-allyl),并利用傅立叶变换红外光谱,磁共振氢谱对其表征。用动态扫描量热与热重分析研究了其固化过程及热性能,随后用其对双马来酰亚胺–三嗪树脂(BT树脂)改性,并分析了改性树脂的力学性能。结果表明,Boz-allyl存在两种固化机理,固化物5%和10%热失重温度分别为325,385℃,在800℃时质量保持率仍可达34%,说明其具有优良的热稳定性和耐烧蚀性,用其改性后BT树脂韧性明显提高,当Boz-allyl质量分数为8%时冲击和弯曲强度达到最大值,分别为11.32 kJ/m2和127.11 MPa。  相似文献   

9.
为进一步获得高性能的超高分子量聚乙烯(UHMWPE)材料,以有机物乙酸钾为改性剂改性埃洛石纳米管(HNTs),制备杂化HNTs。通过熔融混合后模压的方式制备不同改性HNTs含量的UHMWPE/HNTs纳米复合材料。研究改性剂对HNTs结构的影响及改性HNTs对复合材料力学性能与热稳定性的影响。结果表明:乙酸钾增加了HNTs的层间距,弱化分子内的作用力。改性HNTs的用量为3 g时,复合材料的拉伸强度最大,为25.5 MPa。改性HNTs用量5 g时,复合材料的断裂伸长率和冲击强度较未加入HNTs时分别下降了20%和3.3%;弯曲强度和维卡软化点较未加入HNTs时分别提高1 MPa、3.5℃。改性HNTs的加入提高了UHMWPE的热稳定性及部分力学性能。  相似文献   

10.
通过熔融共混方法成功制备了尼龙-6(PA6)/埃洛石纳米管(HNTs)二元复合材料和PA6/碳纤维(CF)/HNTs三元复合材料,并研究了HNTs对PA6力学性能及热性能的影响,以及HNTs和CF协同增韧增强PA6的效果。结果表明,HNTs的加入能够显著提高PA6的刚性和韧性,在质量分数10%的添加量下,可将PA6冲击强度提高56.4%,弯曲模量提高50%。另外,HNTs能够有效诱导PA6结晶形态从α晶型向γ晶型转变,降低了结晶度,有利于降低材料的成型收缩率。同时,HNTs和CF在增韧增强PA6方面显示出了良好的协同作用。  相似文献   

11.
PA66/TLCP/埃洛石纳米管三元复合材料的结构与性能   总被引:2,自引:0,他引:2  
采用熔融共混方法制备了尼龙66(PA66)/热致液晶聚合物(TLCP)/埃洛石纳米管(HNTs)三元复合材料.结果表明,TLCP对PA66起到一定的增强增韧作用,加入HNTs后,PA66/TLCP/HNTs三元复合材料的弯曲性能明显提高,含有质量分数10%TLcP和5%HNTs的三元复合材料相比纯PA66,在冲击强度提高32.6%的同时,拉伸强度、弯曲强度、热变形温度分别提高了约16.3%、103%、22℃.采用差示扫描量热分析研究了复合材料中TLCP和HNT8对PA66结晶和熔融性能的影响,扫描电子显微镜照片和动态热机械分析表明,HNTs的加入改善了PA66与TLCP的相容性,TLCP在HNTs的作用下能够较好地原位成纤.  相似文献   

12.
BMI改性苯并恶嗪树脂及其复合材料研究   总被引:4,自引:1,他引:3  
采用双马来酰亚胺(BMI)对苯并恶嗪进行改性,通过溶液法制备了苯并恶嗪/BMI树脂基玻璃布复合材料,对其力学性能和吸水性能进行了研究,并研究了苯并恶嗪/BMI树脂体系的物理性能和反应特性.结果表明,随BMI用量的增加,苯并恶嗪/BMI树脂体系的凝胶时间缩短;体系的聚合过程只有一个放热峰,峰顶温度为232℃,且与BMI的用量无关;随BMI用量的增加,复合材料的弯曲强度和冲击强度升高,吸水率下降.  相似文献   

13.
苯并噁嗪树脂是一种新型开环聚合酚醛树脂,能通过开环聚合反应生成类似酚醛树脂结构.自制合成了单环苯并恶嗪,通过红外光谱、差热分析法研究了苯并噁嗪的结构、固化行为和工艺性能.制备了一种苯并噁嗪改性酚醛树脂灌封胶黏剂,并通过拉伸强度和热重分析对其力学性能和耐热性进行分析研究.结果表明该苯并噁嗪改性酚醛树脂灌封胶黏剂耐热性优异,在600℃时重量保持率为52.7%.  相似文献   

14.
采用熔融共混方法制备了热致液晶聚合物(TLCP)/埃洛石纳米管(HNTs)/尼龙66(PA66)原位混杂复合材料,研究了其导热性能、力学性能及微观形态。结果表明:在实验范围内,复合材料的导热性能及力学性能均随着HNTs含量的增加而提高,当HNTs质量分数增至40%时,复合材料的导热系数、热变形温度、拉伸强度、弯曲强度及弯曲模量分别提高了134%、144%、15.3%、31.9%、231%;扫描电子显微镜(SEM)显示,TLCP及HNTs均能在基体中均匀分散,并能观察到TCLP所形成的沿纤维轴方向取向的微纤及HNTs所形成的导热网链。  相似文献   

15.
纳米炭粉改性苯并噁嗪树脂烧蚀性能研究   总被引:1,自引:0,他引:1  
为进一步提高苯并噁嗪树脂的烧蚀性能,采用纳米炭粉对其进行了改性研究。采用透射电镜(TEM)和场发射电子显微镜(SEI)观察了纳米炭粉在苯并噁嗪树脂的中的分散状态;通过热失重分析研究了纳米炭粉质量分数对苯并噁嗪树脂残炭率的影响并测试了烧蚀性能;同时采用X-射线衍射法(XRD)对炭层结构进行了分析。结果表明,质量分数为10%纳米炭粉的改性苯并噁嗪800℃残炭率可达到63.6%,该体系700℃炭化后的压缩强度为纯树脂的3.8倍。改性后的苯并噁嗪树脂炭化层结构致密,裂纹小,石墨化度与炭结构的有序度大大提升,最终使树脂的耐烧蚀性能与抗热震性获得改善。  相似文献   

16.
以4,4’-二氨基二苯甲烷、苯酚和甲醛为原料合成二胺型苯并恶嗪(MDA–BOZ),并用其改性环氧树脂(EP)。采用湿法缠绕成型方法制备单向高强玻璃纤维(S–GF)增强改性EP基复合材料。用T–β外推法和凝胶化时间法确定了复合材料的成型工艺,并测试了其在室温和高温下的拉伸强度、弯曲强度、层间剪切强度等力学性能。与EP/4,4’–二氨基二苯砜(DDS)/S–GF复合材料相比,EP/MDA–BOZ/DDS/S–GF复合材料综合力学性能有较大提高。EP/MDA–BOZ/DDS/S–GF复合材料室温弯曲强度达1 428.3 MPa,层间剪切强度达79.92 MPa,纵向拉伸强度1 134.1 MPa,拉伸弹性模量为40.15 GPa。复合材料在100℃时,弯曲强度保持率为78.95%,层间剪切强度保持率为81.06%。扫描电子显微镜分析发现,改性树脂与玻璃纤维界面粘结性较好。  相似文献   

17.
使用环氧树脂基类玻璃高分子(EPV)对苯并噁嗪树脂进行改性,可以在保证聚苯并噁嗪树脂加工性能、热性能、强度的情况下,有效地提高聚苯并噁嗪的韧性,同时,高价值EPV回收对于节能减排具有重要意义。将双酚A-苯胺型苯并噁嗪与EPV按照不同比例共混固化,制备具有良好力学性能、热性能的聚苯并噁嗪改性体系,并对其中的EPV进行回收。使用傅里叶变换红外光谱仪、差示扫描量热分析仪、扫描电子显微镜等研究了共混体系固化过程中的反应机理、固化物化学结构和聚集态结构,通过动态热机械分析仪、万能试验机、电子悬臂梁冲击试验机研究了共混体系固化物的热力学性能、弯曲性能、韧性。结果表明,EPV的添加提升了共混体系固化物的力学性能和热性能,当添加EPV质量分数达到15%时,共混体系固化物的冲击强度可达到16.6 kJ/m2,比纯聚苯并噁嗪提高69.4%;当添加EPV质量分数达到20%时,共混体系固化物的玻璃化转变温度、室温下的储能模量、弯曲强度相比于纯聚苯并噁嗪分别提高了17℃,11.6%,43.1%。依靠动态酯交换反应从共混体系固化物中回收得到与纯EPV结构一致的EPV。  相似文献   

18.
埃洛石纳米管对线形低密度聚乙烯的改性作用   总被引:1,自引:0,他引:1  
采用天然纳米材料埃洛石纳米管(HNTs)通过普通的塑料加工方法制备了线形低密度聚乙烯/埃洛石(LLDPE/HNTs)纳米复合材料,研究了用偶联剂KH550改性HNTs前后纳米复合材料的力学性能、阻燃性能和热稳定性.结果表明:HNTs的加入能明显提高LLDPE的阻燃性能,增加LLDPE的拉伸强度,但引起冲击强度和5%~10%热失重温度的明显下降 用KH550改性HNTs能进一步提高HNTs的阻燃效果,并提高复合材料的冲击强度和热稳定性.  相似文献   

19.
使用环氧树脂基类玻璃高分子(EPV)对苯并噁嗪树脂进行改性,可以在保证聚苯并噁嗪树脂加工性能、热性能、强度的情况下,有效地提高聚苯并噁嗪的韧性,同时,高价值EPV回收对于节能减排具有重要意义。将双酚A-苯胺型苯并噁嗪与EPV按照不同比例共混固化,制备具有良好力学性能、热性能的聚苯并噁嗪改性体系,并对其中的EPV进行回收。使用傅里叶变换红外光谱仪、差示扫描量热分析仪、扫描电子显微镜等研究了共混体系固化过程中的反应机理、固化物化学结构和聚集态结构,通过动态热机械分析仪、万能试验机、电子悬臂梁冲击试验机研究了共混体系固化物的热力学性能、弯曲性能、韧性。结果表明,EPV的添加提升了共混体系固化物的力学性能和热性能,当添加EPV质量分数达到15%时,共混体系固化物的冲击强度可达到16.6 kJ/m2,比纯聚苯并噁嗪提高69.4%;当添加EPV质量分数达到20%时,共混体系固化物的玻璃化转变温度、室温下的储能模量、弯曲强度相比于纯聚苯并噁嗪分别提高了17℃,11.6%,43.1%。依靠动态酯交换反应从共混体系固化物中回收得到与纯EPV结构一致的EPV。  相似文献   

20.
采用苯并恶嗪(BOZ)树脂对RTM双马来酰亚胺(BMI)树脂改性,通过流变性能测试,动态机械分析,扫描电镜及力学性能测试研究了BOZ含量对改性树脂性能的影响。结果表明,加入质量分数7%BOZ的改性树脂体系综合性能最优,相比于未改性树脂,固化收缩率减小约16%,冲击强度提高约47%,且拉伸强度未有明显下降,而拉伸模量和弯曲模量则略有提高,并保持了较好的耐热性能,可满足RTM工艺的开放期要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号