首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of UV radiation on the removal of formic, oxalic and maleic acids from water by metallic ion (Fe2+ or Cu2+)/H2O2 and metallic ion/O3 was studied and compared. The results showed that metallic ion/O3/UV has higher efficiency than metallic ion/H2O2/UV for oxalic acid removal. UV radiation significantly increases the efficiency of metallic ion/H2O2 for formic and maleic acids removal while its effect on the efficiency of metallic ion/O3 for formic acid removal is minor. However, at pH 2, O3 alone showed higher efficiency than metallic ion/H2O2/UV for formic acid removal. Contrary to the relative efficiency of metallic ions in the previous systems, Cu2+ exhibited higher rate than Fe2+ for the removal of the degradation products of maleic acid by O3. UV radiation exhibited a minor effect on the efficiency of Cu2+/O3, while it exhibited a large effect on the efficiency of Fe2+/O3 for the removal of the degradation products of maleic acid.  相似文献   

2.
Ozonation of citric acid in water catalyzed by different ions from the first row of transition metals (Mn2+, Co2+, Ti4+, Fe2+, Cu2+, Ni2+ and Zn2+) was investigated at room temperature. The results showed that at pH=2, where the decomposition of citric acid is negligible by only ozone, the following order of efficiency of metallic ions for the decomposition of citric acid by ozone, and also for the TOC removal, was obtained: Mn2+ > Co2+ > Ti4+ > Fe2+. Cu2+, Ni2+ and Zn2+ showed negligible efficiency under the same experimental conditions. At pH=5.5, Mn2+ and Co2+ showed slightly higher efficiency than at pH=2 while Ti4+ and Fe2+ showed insignificant effect at this pH value. On the other hand, at pH=7 the investigated catalysts showed no obvious catalytic efficiency for the decomposition of citric acid by ozone.  相似文献   

3.
It is demonstrated through the electrochemical reduction of cobalt manganese spinels that it is possible to increase the cathodic reactivity by replacement of cobalt ions by nickel and copper cations. The reduction reaction occurs on active sites formed by Mn4+ ions associated, in octahedral sites, with Mn3+ ions, for the NixCo1 ? x Mn2O4 compounds. For the copper manganites oxides, CuxCo1 ? xMn2O4, the electrochemical reaction is likely to occur by the redox on solid state between Mn3+ and Cu2+ cations.  相似文献   

4.
The aim of this research was to prepare magnesium ferrite (MgFe2O4) magnetic nanoparticles and to investigate their sorption characteristics towards Mn2+, Co2+, Ni2+, Cu2+ ions in aqueous solution. MgFe2O4 was synthesized by glycine-nitrate combustion method and was characterized by low crystallinity with crystallite size of 8.2?nm, particle aggregates of 13–25?nm, BET surface area of 14?m2/g and pore size of 8.0?nm. Sorption properties of MgFe2O4 towards Mn2+, Co2+, Ni2+, Cu2+ ions were studied using one-component model solutions and found to be dependent on metal ions concentration, contact time, pH and conditions of regeneration experiment. The highest sorption capacity of MgFe2O4 was detected towards Co2+ (2.30?mmol?g1) and Mn2+ (1.56?mmol?g?1) and the lowest towards Ni2+ (0.89?mmol?g?1) and Cu2+ (0.46?mmol?g?1). It was observed that sorption equilibrium occurs very quickly within 20–60?min. The pHzpc of sorbent was calculated to be 6.58. At studied pH interval (3.0–7.0) the sorption capacity of MgFe2O4 was not significantly affected. Regeneration study showed that the metal loaded sorbent could be regenerated by aqueous solution of 10?3 M MgCl2 at pH 6.0 within 120?min of contact time. Regeneration test suggested that MgFe2O4 magnetic sorbent can be efficiently used at least for four adsorption-desorption cycles. The high sorption properties and kinetics of toxic metal ion sorption indicates good prospects of developed sorbent in practice for wastewater treatment.  相似文献   

5.
The thermal decomposition of manganese and cobalt-terephthalate Metal-Organic Framework precursors was utilized as a synthetic route for fabrication of Co3O4, Mn3O4 and Mn2O3 nanoparticles. The prepared metal oxide nanoparticles of Co3O4, Mn3O4 and Mn2O3 possess average size diameter of 40, 60 and 80 nm respectively. The findings demonstrate that spinel structure nanoparticles of Co3O4 and Mn3O4 exhibit efficient catalytic activity toward heterogeneous olefin epoxidation in the presence of tert-butyl hydroperoxide. In addition, Co3O4 and Mn3O4 nanoparticles illustrated excellent catalytic stability and reusability for nine and four cycles, respectively, toward olefin oxidation.  相似文献   

6.
During the wet oxidation of contaminated wastewaters, the destruction of low molecular weight carboxylic acid intermediates such as acetic, glyoxalic, and oxalic acids is often the rate-controlling step. Oxidation of acetic acid, a very recalcitrant intermediate, requires compelling treatment severity. Heterogeneous catalytic wet oxidation of model acetic acid aqueous solutions was conducted under mild conditions (below the normal boiling point of water) using hydrogen peroxide over various transition metal-exchanged NaY zeolites. Treatment of Cu2+–NaY with oxalic acid [OA] led to a catalyst, Cu2+–NaY [OA], with significantly improved properties in terms of total organic carbon (TOC) removal efficiency and catalyst stability against leaching. This catalyst outperformed homogeneous Cu2+ by a factor of 2–2·5 times. Continuous feeding of H2O2 reduced its undesirable decomposition. Improvement of the TOC-degradation performance by Cu2+–NaY [OA] was tentatively attributed to the removal of sodium and possibly aluminium in the zeolite. © 1998 Society of Chemical Industry  相似文献   

7.
Sn2S3 nanocrystals (NCs) with both Mn2+ doping and Cu2+ incorporation were synthesized using a chemical bath deposition method. The Cu2+ ions formed an anorthic Mn2+-doped Cu2SnS3 structure with Eg =?1.44?eV, which altered the material's optical and photo/electrochemical properties. After coating the bare Nb2O5 electrode with Mn2+-doped Sn2S3 or Mn2+-doped Cu2SnS3 NCs, the photoluminescence spectrum was blue-shifted to 411.13?nm from 411.69?nm. Compared to the sample without Cu2+, the Cu2+-incorporated sample showed a slightly stronger emission at the same position, possibly due to disorder in the crystalline structure based on variations at the interface of Mn2+-doped Cu2SnS3 NCs. Electrochemical analysis showed a lower charge transfer resistance in the Mn2+-doped Cu2SnS3, which is related to its larger electroactive surface area. The larger electroactive surface area is attributed to the Faradaic redox processes at the electrode surface, which suppresses the carrier recombination. The coexistence of Cu2+ and Mn2+ ions shortened the electron transport pathway at the interface and improved the carrier diffusion coefficient and diffusion length, leading to a higher specific capacitance that implies higher energy storage performance. Finally, the I-V characteristics of the Mn2+-doped Cu2SnS3-coated Nb2O5 electrode under various light illumination conditions indicated its better efficiency in photoresponse, electron generation, and charge collection, owing to a superior charge transport mechanism. Detailed results were obtained about the charge dynamics in the as-prepared photo/electrochemical devices with Cu2+ incorporation in the Mn2+-doped SnS3 electrode.  相似文献   

8.
The mineralization of acidic aqueous solutions with 230 and 115 ppm of herbicide 3,6-dichloro-2-methoxybenzoic acid (dicamba) in 0.05 M Na2SO4 of pH 3.0 has been studied by electro-Fenton and photoelectro-Fenton using a Pt anode and an O2-diffusion cathode, where oxidizing hydroxyl radicals are produced from Fenton's reaction between added Fe2+ and H2O2 generated by the cathode. While electro-Fenton only yields 60-70% mineralization, photoelectro-Fenton allows a fast and complete depollution of herbicide solutions, even at low currents, by the action of UV irradiation. In both treatments, the initial chlorine is rapidly released to the medium as chloride ion. Comparative electrolyses by anodic oxidation in the absence and presence of electrogenerated H2O2 give very poor degradation. The dicamba decay follows a pseudo-first-order reaction, as determined by reverse-phase chromatography. Formic, maleic and oxalic acids have been detected in the electrolyzed solutions by ion-exclusion chromatography. In electro-Fenton, all formic acid is transformed into CO2, and maleic acid is completely converted into oxalic acid, remaining stable Fe3+-oxalato complexes in the solution. The fast mineralization of such complexes by UV light explains the highest oxidative ability of photoelectro-Fenton.  相似文献   

9.
In this research, we studied the first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Properties, such as valence state of the transition metals and crystallographic features, were analyzed by X-ray absorption spectroscopy and X-ray and neutron diffractions. Especially, two plateaus observed around 3.75 and 4.54 V were investigated by ex situ X-ray absorption spectroscopy. XANES studies showed that the oxidation states of transition metals in Li[Ni1/3Co1/3Mn1/3]O2 are mostly Ni2+, Co3+ and Mn4+. Based on neutron diffraction Rietveld analysis, there is about 6% of all nickel divalent (Ni2+) ions mixed with lithium ions (cation mixing). Meanwhile, it was found that the oxidation reaction of Ni2+/Ni4+ is related to the lower plateau around 3.75 V, but that of Co3+/Co4+ seems to occur entire range of x in Li1−x[Ni1/3Co1/3Mn1/3]O2. Small volume change during cycling was attributed to the opposite variation of lattice parameter “c” and “a” with charging-discharging.  相似文献   

10.
To make a Mn2+-doped red glass phosphor that can be excited with ultraviolet (UV) light of light-emitting diodes (LEDs), 60P2O5-35ZnO-5Al2O3-8MnO-xCu2O glasses (x = 0-1.00) were prepared by a melt-quenching method at 1200-1400°C for 30-180 minutes in atmospheric air, and the redox of Mn and Cu as well as fluorescence properties were investigated. The Mn2+ ion was not reduced and oxidized in the melting, quenching, and annealing processes. The valence of Cu in the glasses changed in the order of 0, 1+, and 2+ with the increase in the amount of Cu2O and in the melting temperature and time. In this study, a 60P2O5-35ZnO-5Al2O3-8MnO-0.10Cu2O glass melted at 1250°C for 90 minutes, having the highest Cu+ concentration, showed the strongest Mn2+ red fluorescence under the UV light at 275 nm. This strong Mn2+ red fluorescence has been caused by the energy transfer from excited Cu+ ions to Mn2+ ions.  相似文献   

11.
It was discovered experimentally that heteropolymolybdophosphoric acids (HPA) with Keggin and Dawson structure are inactive for H2O2-decomposition, while their salts (Fe3+, Cu2+, Co2+ and Mn2+) all possess more activity. It could be concluded that the active species is the countercation of these kinds of heteropolymolybdates. The molybdenum ions in the polyanions are not active. If the molybdenum ions in the polyanions of these acids are substituted partly by vanadium ion (HPA-n), then not only does the catalytic activity increase regularly with the number of vanadium ions substituted (n) but the kinetic curve is also different from that of the salt, characterized by an S-shape, indicating the formation of an active intermediate as a result of the reaction between the polyanion of HPA-n and the substrate.  相似文献   

12.
An efficient oxidation catalyst was developed to increase the combustion efficiency of unreacted CO, H2, and CH4 in flue gas of solid oxide fuel cell (SOFC) stack. Amorphous Cu‐Mn oxide catalyst (CuMnLa/Alumina) showed high catalytic activity, but significant degradation occurred due to phase transition to spinel structure at high temperatures (T > 650°C). La0.8Sr0.2Mn0.67Cu0.33O3 perovskite (LSMC(p)) supported CuO or Mn2O3 exhibited improved thermal stability than CuMnLa/Alumina catalyst. Especially in case of 50Mn/LSMC(p), after the catalyst was exposed to 800°C for 24 h, T50 of CO, H2 and CH4 was achieved at 170, 230, and 600°C, respectively. This result is much lower than that of CuMnLa/Alumina, which was exposed to the same condition. The high combustion efficiency is due to retention of the Cu2+‐Mn3+ redox couple, and supply of lattice oxygen from LSMC(p), especially at high temperature. © 2017 American Institute of Chemical Engineers AIChE J, 64: 940–949, 2018  相似文献   

13.
The subject of this paper is the effect of foreign cations on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system. One reference mixture and eighteen modified mixtures, prepared by mixing the reference sample with 1% w/w of chemical grade MnO2, CuO, V2O5, PbO, CdO, ZrO2, Li2O, MoO3, Co2O3, NiO, WO3, ZnO, Nb2O5, CrO3, Ta2O5, TiO2, BaO2 and H3BO3 were studied. The effect on the reactivity is evaluated on the basis of the free lime content in samples sintered at 1200 and 1450 °C. At 1200 °C, the reactivity of the mixture is greatly increased in the presence of Cu and Li oxides. Based on their effect at 1450 °C, the added elements can be divided into three groups. W, Ta, Cu, Ti and Mo show the most positive effect, decreasing the free CaO (fCaO) content by 30-60%, compared with the pure sample. Cr and B cause an increase of fCaO content, while the rest of the elements exhibit a marginal positive effect. According to their volatility at 1450 °C, the added compounds can be subdivided into three groups of low (Ti4+, Cu2+, Mo6+, W+6, V5+, Zn2+, Zr4+), moderate (Cr6+, Co3+, Ni2+, Mn4+) and high volatility (Cd2+, Pb2+). All burned samples, analyzed by means of X-ray diffraction, have a final mineralogical composition, which corresponds to the structure of a typical clinker.  相似文献   

14.
The narrow optical band gap, higher electrical conductivity, and wider-absorption range are three key features that a good photocatalyst must possess. Herein, we have fabricated Cu-doped MnO2 (Mn1-xCuxO2) nanostructure by facile wet chemical approach and formed its nanocomposite with r-GO (Mn1-xCuxO2/r-GO) via ultra-sonication approach. The successful replacement of host metal ions (Mn4+) with the dopant metal ions (Cu2+) was supported with the PXRD, FT-IR, and EDX characterizations. The effect of Cu-doping on the band gap and r-GO matrix on the conductivity of the fabricated nanocomposite was also evaluated via Tauc plots and I–V tests, respectively. The photocatalytic efficiency of the fabricated photocatalysts was tested and compared against the methylene blue (MB) under visible light irradiation. The photocatalytic experiments revealed that Mn1-xCuxO2/r-GO photocatalyst exhibited superior photocatalytic aptitude than that of pristine MnO2 and Mn1-xCuxO2 photocatalysts. More precisely, the Mn1-xCuxO2 photocatalysts degraded 86.89% MB dye at the rate of 0.021 min?1 after a 90-min exposure to the visible light. Observed superior catalytic activity of the nanocomposite can be attributed to the synergistic effects between the Cu doped MnO2 and r-GO nanosheets that resulted in its narrow band-gap (2.19 eV) and excellent conductivity (2.217 × 10?2 Scm?1).  相似文献   

15.
The effects of Co loading and calcination temperatures on the catalytic activity of Co/Al2O3 for selective catalytic reduction (SCR) of NO with ethylene in excess oxygen were investigated. Co/Al2O3 showed high and low activities when calcined at high (800 °C) and low (350 °C) temperatures, respectively. The formation and dispersion of cobalt species for catalysts calcined at 350 and 800 °C as well as for Al2O3 were studied by XRD, UV–vis and FTIR spectra. Combined with DRIFTS results of ad-species and reaction experiments, it allowed us to correlate the catalytic activity with active sites of Co/Al2O3, and the catalytic functions of active cobalt species and support were clarified. Co3O4 species contributed to the oxidation of NO to various nitrates and of C2H4 to reactive formate species, even in the absence of O2, whereas the side reaction of ethylene combustion occurred simultaneously when excess oxygen was present. Tetrahedral Co2+ ions in CoAl2O4, which acted as the active sites, were responsible for the reaction between formate and nitrate species to form organic nitro compound.  相似文献   

16.
《Ceramics International》2023,49(6):8772-8780
Despite Co3O4 has been widely applied in electromagnetic wave (EMW) absorbers, single Co3O4 doesn't have excellent EMW absorbing performance. Modification of Co3O4 with other metal ions addition is an effective way to improve its impedance matching and EMW attenuation. Herein, CuO/Cu0.3Co2.7O4/Co3O4 and NiCo2O4/Co3O4 composites have been obtained via a facile two-stage strategy, and the influence of Cu2+ and Ni2+ on the high-frequency and low-frequency EMW absorbing performance of the composites has been investigated as well. The electromagnetic parameters of samples are regulated by adding different metal ions to achieve optimum impedance matching. Dipole polarization and magnetic resonance are the main loss mechanisms. The composite with Cu2+ and Ni2+ additions exhibits the best EMW absorption with an effective absorption bandwidth (EAB) of 10.8–18.0 GHz for 2.1 mm thickness at high-frequency and 4.5–8.5 GHz for 4.9 mm thickness at low frequencies, respectively. This work offers an effective method for preparing composite materials with multicomponent broadband absorption of oxides.  相似文献   

17.
The efficiency of catalytic ozonation with homogeneous (containing dissolved ions of Fe2+, Mn2+, Cu2+, Ni2+, Co2+, V5+, Cr3+, Mo6+) and heterogeneous (MnO2, Ni2O3, Fe2O3, CuO, Al2O3, CoO, V2O5, Cr2O3, MoO3, TiO2) catalysts and non-accompanied ozonation was compared for degradation of m-dinitrobenzene (m-DNB). Several transition metals in homogeneous and heterogeneous form improved significantly the ozone performance for degradation of m-DNB. This improvement was found to be due to supplementary formation of reactive species (hydroxyl radicals) and better ozone utilization. The effects observed were found to be strongly dependent on the treatment conditions.  相似文献   

18.
《Ceramics International》2023,49(2):1940-1946
In this work, two Cr-free high entropy oxides (HEOs), an equimolar (MnFeCoNiCu)3O4 and a non-equimolar (Mn0.272Fe0.272Co0.272Ni0.092Cu0.092)3O4 have been synthesized by a solid-state reaction method. The reaction sequence and electrical conductivity were also studied for these two HEOs. It is demonstrated that a rock-salt phase containing a solid solution of NiO and CuO appears in the synthesizing process of (MnFeCoNiCu)3O4, which is ascribed to the incomplete solubilization of rock-salt phase in the spinel phase. For (Mn0.272Fe0.272Co0.272Ni0.092Cu0.092)3O4, a single spinel phase (Fd-3m) is obtained at 750 °C, which is much lower than that of the (MnFeCoNiCu)3O4 sample. Furthermore, Mn, Fe, Co, Ni elements exist in the chemical states of +2 and + 3, and Cu exists in Cu2+ state. The electrical conductivity of (Mn0.272Fe0.272Co0.272Ni0.092Cu0.092)3O4 is approximately 15.77 S cm-1 at 800 °C, which is nearly three times higher than that of the (MnFeCoNiCu)3O4 sample.  相似文献   

19.
Spherical Li[Ni1/3Co1/3Mn1/3]O2 powders were synthesized from LiOH·H2O and coprecipitated spherical metal hydroxide, (Ni1/3Mn1/3Co1/3)(OH)2 and coated with Al(OH)3. The Al(OH)3-coated Li[Ni1/3Co1/3Mn1/3]O2 showed a capacity retention of 80% at 320 mA g−1 (2 C-rate) based on 20 mA g−1 (0.1 C-rate), while the pristine Li[Ni1/3Co1/3Mn1/3]O2 delivered only 45% at the same current density. Also, unlike pristine Li[Ni1/3Co1/3Mn1/3]O2, the Al(OH)3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode exhibits excellent rate capability and good thermal stability.  相似文献   

20.
Formation of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 have been studied in aqueous acidic medium over Pd/SiO2 catalyst in presence of different halide ions (viz. F, Cl and Br). The halide ions were introduced in the catalytic system via incorporating them in the catalyst or by adding into the reaction medium. The nature of the halide ions present in the catalytic system showed profound influence on the H2O2 formation selectivity in the H2 to H2O2 oxidation over the catalyst. The H2O2 destruction via catalytic decomposition and by hydrogenation (in presence of hydrogen) was also found to be strongly dependent upon the nature of the halide ions present in the catalytic system. Among the different halides, Br was found to selectivity promote the conversion of H2 to H2O2 by significantly reducing the H2O2 decomposition and hydrogenation over the catalyst. The other halides, on the other hand, showed a negative influence on the H2O2 formation by promoting the H2 combustion to water and/or by increasing the rate of decomposition/hydrogenation of H2O2 over the catalyst. An optimum concentration of Br ions in the reaction medium or in the catalyst was found to be crucial for obtaining the higher H2O2 yield in the direct synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号