首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
以等体积浸渍法制备了负载型Fe2O3/γ-Al2O3催化剂,分别采用XRD、SEM和BET对催化剂结构进行了表征。研究了Fe2O3/γ-Al2O3催化氧化深度处理造纸废水的工艺,分别考察了反应温度、催化剂加入量、H2O2加入量等因素对造纸废水降解效果的影响,得出较佳的催化氧化处理造纸废水的工艺条件。在反应温度为70℃,催化剂投加质量浓度为2.5 g/L,H2O2投加质量浓度为3.7 g/L,pH=8.10,反应时间90 min条件下,造纸废水COD去除率可达86.2%,脱色率达到98.6%以上。催化剂稳定性高,铁离子析出质量浓度为0.08 mg/L,对反应影响可以忽略。  相似文献   

2.
UV/Fenton氧化法对苯酚氧化效果的实验研究   总被引:4,自引:0,他引:4  
尹宏生  张婷  刘佳媛 《化工科技》2010,18(1):10-12,51
研究UV/Fenton氧化法中各个因素对降解水中苯酚的影响,确定UV/Fenton法处理苯酚废水的工艺条件。保持UV/Fenton体系的基准条件不变,通过改变H2O2浓度、n(Fe2+)∶n(H2O2)、废水初始pH值等实验条件,考察这些因素对UV/Fenton法处理苯酚废水效果的影响。结果表明:UV/Fen-ton氧化法对苯酚废水有较好的去除效果和较高的反应速率。当废水初始pH值为3.0时,经30 min的反应,苯酚去除率达到99%,COD去除率达到86%。但是苯酚废水COD去除率滞后于苯酚去除率。UV/Fenton法能够在较短的时间内去除苯酚和COD,H2O2浓度、n(Fe2+)∶n(H2O2)对处理效果影响较大,H2O2浓度决定苯酚去除率和COD去除率,而n(Fe2+)∶n(H2O2)是影响降解速率的主导因素。  相似文献   

3.
《应用化工》2022,(2):253-257
利用等体积浸渍法制备了一系列Fe/γ-Al_2O_3催化剂。采用催化湿式氧化法考察了催化剂中Fe含量、催化剂焙烧温度、H_2O_2用量、反应温度、废水初始pH等对亚甲基蓝废水COD去除率的影响。结果表明,催化剂焙烧温度为300℃,Fe负载量为0.02 g时催化效果较好;其对应的反应条件为30%的H_2O_2的用量100μL,反应温度30℃,废水pH值4.5,反应时间1 h时,COD去除率最高达到80%。  相似文献   

4.
《应用化工》2016,(2):253-256
利用等体积浸渍法制备了一系列Fe/γ-Al_2O_3催化剂。采用催化湿式氧化法考察了催化剂中Fe含量、催化剂焙烧温度、H_2O_2用量、反应温度、废水初始pH等对亚甲基蓝废水COD去除率的影响。结果表明,催化剂焙烧温度为300℃,Fe负载量为0.02 g时催化效果较好;其对应的反应条件为30%的H_2O_2的用量100μL,反应温度30℃,废水pH值4.5,反应时间1 h时,COD去除率最高达到80%。  相似文献   

5.
CuO/γ-Al2O3催化湿式过氧化水溶液中苯酚   总被引:2,自引:1,他引:1  
孔黎明  刘晓勤 《化工进展》2006,25(10):1162-1165
研究了以CuO/γ-Al2O3为催化剂、H2O2为氧化剂的催化湿式过氧化技术对苯酚的降解效果,主要考察了H2O2含量、处理温度对苯酚去除率及TOC去除率的影响。结果表明:苯酚去除率及TOC去除率均随着H2O2含量的增加及处理温度的升高而增大;在苯酚初始浓度为200 mg/L、H2O2的初始含量为600 mg/L、pH值为5.0、处理温度为50 ℃时,处理2.0 h后苯酚去除率达到100%,TOC去除率可达到96.6%。ICP分析表明,溶液中Cu2+浓度随着H2O2含量和处理温度有微小的增大,结合HPLC分析可能是由于苯酚降解过程中产生的羧酸与CuO发生了反应。  相似文献   

6.
胡诗越  原金海  唐倩 《精细化工》2022,39(4):819-827
以γ-Al2O3为载体,通过超声浸渍法制备Mn-Ce/γ-Al2O3,并以其为催化剂采用湿式催化氧化法处理高浓度高盐毒死蜱废水。通过FTIR、XRD、SEM对催化剂结构进行表征。通过单因素实验探讨了反应温度、pH、催化剂用量、氧化剂用量对COD去除率的影响。采用均匀设计法对湿式催化氧化实验条件进行优化,在进水COD质量浓度为13550 mg/L时,最优处理条件为反应温度230 oC,反应时间2 h,进水pH=7,质量分数30%过氧化氢5.5 mL,Mn-Ce/γ-Al2O3用量0.4 g,在该条件下,COD去除率达到90.63%;各因素影响实验结果的主次顺序为反应温度>催化剂用量>氧化剂用量>pH>反应时间。采用DFT方法计算毒死蜱分子的量子化学参数,结合自由基捕获实验和紫外光谱结果初步探讨了湿式催化氧化降解毒死蜱的可能机理。结果表明,γ-Al2O3上负载了MnO2、CeO2活性组分,Mn-Ce/γ-Al2O3能较好地促进H2O2产生•OH;动力学实验表明,湿式催化氧化对废水COD的降解过程符合准二级动力学方程。  相似文献   

7.
以γ-Al2O3为载体,Fe、Mn、Cu和Zn的硝酸盐为活性组分的前驱物,采用浸渍焙烧法制备了负载型催化剂,并分别以H2O2和NaClO为氧化剂,对比了在常温常压条件下催化湿式氧化工艺中处理甲基橙AO52模拟废水的效果,考察了各种条件对催化剂活性的影响。结果表明,Fe2O3/γ-Al2O3表现出较好的催化活性和稳定性,H2O2为适宜的氧化剂;以100 mmol·L-1的Fe(NO3)3溶液浸渍15 h,烘干后在350℃焙烧3 h,得到兼具活性与稳定性的Fe2O3/γ-Al2O3催化剂;当Fe2O3/γ-Al2O3和H2O2投加量分别为30和1.65 g·L-1时,处理4 h后,废水的脱色率、COD去除率和TOC去除率最高分别达88.21%、78.57%和83.20%。  相似文献   

8.
采用浸渍法制备Fe/γ-Al2O3催化剂,用于ClO2催化氧化处理含酚废水,研究废水初始pH、ClO2用量、催化剂加入量、反应温度和催化剂重复使用等因素对含酚废水总有机碳(TOC)去除率的影响。结果表明,在pH为7、V(ClO2)∶V(酚溶液)=0.20、Fe/γ-Al2O3催化剂加入量20 g·L-1和反应温度20 ℃条件下,Fe/γ-Al2O3催化剂能连续使用7次,保持稳定的催化活性,对含酚废水的TOC去除率为58.83%。  相似文献   

9.
以自制Fe2O3-Ce O2/γ-Al2O3为催化剂,采用催化湿式过氧化氢氧化法(CWPO)预处理有机磷农药废水,通过单因素和正交试验研究了过氧化氢投加量、起始p H、反应温度和反应时间对COD的去除效果及影响规律。结果表明,反应最优条件为H2O2投加量2 m L、起始p H=5、反应温度80℃、反应时间40 min,在此条件下COD的去除率可达85.8%,可生化性提高到B/C=0.43。运用一级动力学模型和Arrhenius经验公式,建立了催化湿式过氧化氢氧化降解COD的动力学方程。  相似文献   

10.
在旋转填充床(RPB)中,研究了O3/Fenton工艺处理模拟焦化废水的效果。考察了Fe2+浓度、旋转床转速、液体流量、气体流量及初始p H值对化学需氧量(COD)去除率及溶液中苯酚、苯胺、喹啉和NH3-N去除率的影响。结果表明,在p H值为6,温度25℃,液体流量20 L/h,气体流量5 L/h,转速1 000 r/min,H2O2的浓度为6.5 mmol/L,Fe2+浓度为0.4 mmol/L的条件下,模拟焦化废水的COD的去除率达到43.57%,废水中苯酚的去除率达81.56%,苯胺为100%,喹啉为81.17%,NH3-N为100%。  相似文献   

11.
Ni对Cu-Ni/γ-Al_2O_3苯羟基化催化剂的影响   总被引:1,自引:0,他引:1  
通过程序升温还原方法合成了Cu/γ-Al2O3和Cu-Ni/γ-Al2O3催化剂,使苯直接羟基化制苯酚。该反应过程中,温度和溶剂对Cu-Ni/γ-Al2O3催化剂的反应性能影响进行了探讨。采用H2-TPR、XRD、EDS等表征技术考察了Ni对催化剂结构和性质的影响。结果表明,Ni使催化剂前驱体还原温度增加、活性组分Cu单晶粒度降低、催化剂表面Cu原子数增加;当反应温度为70°C、以水作反应溶剂时,Cu-Ni/γ-Al2O3比Cu/γ-Al2O3催化剂有较高反应活性和选择性,苯转化率为32.4%,苯酚选择性为93.3%,苯酚收率为30.2%。  相似文献   

12.
采用浸渍-焙烧法制备了Fe/Ti O2-Al2O3、Fe/Ce O2-Al2O3复合催化剂,以H2O2作为氧化剂,对亚甲基蓝废水进行降解处理,考察了催化剂加入量、H2O2加入量、p H、温度以及初始浓度的变化等因素对处理效果的影响。结果表明:Fe/Ti O2-Al2O3的催化性能稍优于Fe/Ce O2-Al2O3,并且在p H=5,温度为65℃条件下,当催化剂加入量为0.15 g、H2O2加入量为15 m L、反应时间为60 min时降解率即可达到97%以上。  相似文献   

13.
Fenton-铁氧体法联合工艺处理络合电镀废水   总被引:2,自引:0,他引:2  
采用Fenton-铁氧体法联合工艺处理含铜、镍的络合电镀废水。探讨了Fenton法破络反应初始pH、初始H2O2质量浓度,Fe2+与H2O2的质量比和反应温度对COD去除率的影响,研究了铁氧体法处理时pH、反应温度、Fe与金属离子的质量比和曝气速率等对处理效果的影响。结果表明,在初始pH=3、初始H2O2质量浓度为3.33g/L、m(Fe2+)/m(H2O2)=0.1、温度25°C的最优Fenton氧化条件下,对废水进行Fenton氧化处理60min,COD去除率高达73.4%。铁氧体法处理的最优工艺条件为:沉淀pH=11,曝气流量25mL/min,Fe与废水中金属离子的质量比为10,反应温度50°C,曝气接触时间60min。在此条件下废水中镍离子和铜离子的去除率分别达到99.94%和99.81%,均达标排放。另外,沉淀污泥的构相分析表明,在最佳工艺条件下所得沉淀物含铁氧体NiFe2O4、Fe3O4等。  相似文献   

14.
以玻璃纤维为载体,将TiO2/Fe3+负载到其表面制成了空间玻璃纤维反应器。利用该反应器以高压汞灯为光源进行了光催化降解水中苯酚的试验研究,重点考察了H2O2及O2的协同作用对光催化氧化的影响。试验发现,H2O2的加入对HO.的产生有显著的引发作用,同时向溶液中充入O2可明显提高光催化效率,降低H2O2用量。试验结果表明,以UV365-250 W光源照射,在初始pH为3~5,O2通入量为1.0 L/(min.L),上升流速为0.7 m/min,H2O2浓度为0.1 mmol/L等试验条件下,初始质量浓度为30 mg/L的苯酚废水经120 min光催化反应后,其矿化率可达83%左右。  相似文献   

15.
采用等体积浸渍法制备了一系列不同Ni和Fe添加量的Ni-Fe/BaTiO3/γ-Al2O3双金属催化剂,并在固定床反应装置上考察了在873~1 073 K温度范围内催化剂对CO2和CH4重整反应的催化活性。实验结果表明:Ni、Fe负载质量分数均为5.0%的Ni-Fe/BaTiO3/γ-Al2O3催化剂活性最好。通过TPR、TPD和TPO表征并与单金属催化剂Ni/BaTiO3/γ-Al2O3相比,Ni-Fe/BaTiO3/γ-Al2O3催化剂具有更高的催化活性、脱附和抗积炭性能。  相似文献   

16.
采用Fenton法对模拟偶氮染料废水进行了处理。考察了废水初始pH值、H2O2和Fe2+投加量、反应时间及反应温度等对模拟染料废水COD去除率的影响。实验结果表明,在甲基红的初始浓度为200mg.L-1,初始pH值为3.0,H2O2和Fe2+投加量分别为20mmol.L-1和1mmol.L-1,反应温度为50℃,反应时间为60min的条件下,废水中COD的去除率可达83.5%。  相似文献   

17.
采用浸渍法制备了活性炭负载型Fe/C催化剂,并将其作为非均相Fenton催化剂处理废水中的N,N-二甲基甲酰胺(DMF)。探讨了溶液初始p H值、H2O2投加量、催化剂投加量和反应温度等因素对DMF去除率的影响。结果表明,对于DMF浓度为1 000 mg/L的废水,在初始p H值为2.5,H2O2投加量为3.0 g/L,催化剂投加量为6.0 g/L和反应温度为30℃的处理条件下,反应60 min,溶液化学需氧量(COD)的去除率可达到60%以上,且溶液中Fe离子浸出浓度仅为0.7 mg/L。该催化剂具有较好的稳定性,可回收使用,使用5次,溶液COD的去除率仍能达到45%以上。  相似文献   

18.
以三氧化二铝为载体,采用浸渍沉淀法制备系列Fe2O3/Ni2O3/Al2O3催化剂。采用TG-DTA,XRD及ESEM等技术对催化剂进行表征,确定催化剂的最佳焙烧温度为460℃。以次氯酸钠为氧化剂,同时考察m(三氧化二镍)/m(三氧化二铝)、m(三氧化二铁)/m(三氧化二镍)、m(次氯酸钠)∶m(靛蓝废水)、pH对印染靛蓝废水处理的影响。结果表明:m(三氧化二镍)/m(三氧化二铝)=0.3,m(三氧化二铁)/m(三氧化二镍)=0.04,m(次氯酸钠)∶m(靛蓝废水)=1∶11,pH=7,反应温度为20℃,常压反应时间为2 h时,COD的去除率为95.3%。  相似文献   

19.
用Fenton试剂处理丁苯橡胶废水,考察了H2O2和FeSO4的用量、初始pH值、反应时间以及反应温度对废水化学需氧量(COD)去除率的影响。结果表明,适宜的处理条件为H2O2(以1 L废水计)8 mL、FeSO4质量浓度1.0 g/L、初始pH值3~10、反应时间30 min、反应温度40℃,在此条件下废水COD的去除率可超过55%。  相似文献   

20.
采用O3/H2O2氧化工艺深度处理制药废水二级生化出水,探讨了废水初始pH、H2O2投加量、O3投加量等因素对O3/H2O2氧化工艺的影响,确定了O3/H2O2氧化技术处理制药废水的最佳操作条件。结果表明,制药废水二级出水COD在480 mg/L左右时,pH为9,进臭氧质量浓度为1 247 mg/(L.h),处理时间为4.5h,COD去除率可达83%,B/C(BOD5/COD)从初始的0.007提升到0.32,较原水增高了46倍,大大提高了制药废水的生化性能,便于后续的生物处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号